ОПТИМАЛЬНОЕ РЕШЕНИЕ ЗАДАЧИ УПРАВЛЕНИЯ ПРЕПОДАВАТЕЛЬСКОЙ СТРУКТУРОЙ КАФЕДРЫ > Полезные советы
Тысяча полезных мелочей    

ОПТИМАЛЬНОЕ РЕШЕНИЕ ЗАДАЧИ УПРАВЛЕНИЯ ПРЕПОДАВАТЕЛЬСКОЙ СТРУКТУРОЙ КАФЕДРЫ

ОПТИМАЛЬНОЕ РЕШЕНИЕ ЗАДАЧИ УПРАВЛЕНИЯ ПРЕПОДАВАТЕЛЬСКОЙ СТРУКТУРОЙ КАФЕДРЫ

Добрынина Н.Ф. Статья в формате PDF 149 KB

Вопросы повышения качества преподавания математики в вузе методом прогнозирования структуры преподавательского состава кафедры были рассмотрены в статьях [1,2].

Была изучена структура преподавательского состава кафедры и получена оптимальная с точки зрения перспектив квалификации преподавателей. Была показана неизбежность роста численности преподавателей более высоких классов квалификации с известной скоростью. В статье [2] решалась задача управления ситуацией, то есть сохранения системы на том же уровне, на котором она находится. Рассмотрены условия, при которых сохраняется структура кафедры.

Однако знание этих условий не отвечает на вопрос о том, как достичь требуемой структуры. На математическом языке возникающая задача управления формулируется как задача о достижимости и состоит в том, чтобы ответить на вопрос, как следует осуществить переход от заданной структуры x(0) к нужной структуре x*. Теория достижимости должна показать, может ли быть достигнута структура x*, и если да, то каким путем. Решение этих вопросов требует привлечения аппарата математического программирования и оптимизации решения задачи. Пользуясь определениями и обозначениями,
введенными в статье [1], рассмотрим задачу достижимости.

В области, где структура сохраняется [2], может быть достигнута любая структура или она может быть приближена сколь угодно точно. Чтобы убедиться в этом, рассмотрим случай управления набором. В [1] было показано, что при постоянной матрице  структура будет со временем сходиться к предельной структуре, удовлетворяющей условию

                      (1)

Следовательно, если нужно свести структуру к виду x*, то следует это сделать за счет выбора вектора r, чтобы удовлетворялось равенство

то есть

           (2)

Вектор r имеет неотрицательные элементы, если x* лежит в области сохраняемости ([2] формула 4).

Управление можно осуществить последовательно, меняя r с каждым шагом и это даст лучшие результаты, чем одно преобразование по формуле (2). Возникает задача о поиске лучшей стратегии. Требуется найти последовательность векторов  таких, что изменение структуры от x(0) к x* происходит оптимальным образом. «Оптимальность» можно понимать в трех смыслах:

1) так быстро, как это возможно;

2) настолько дешево, насколько возможно;

3) настолько плавно, насколько это возможно.

На пpaктике администрация не располагает неограниченным запасом времени для достижения цели. Поэтому поставим задачу о наилучшем приближении к x* за данное время. Один из путей осуществления этой идеи заключается в переводе системы в состояние, возможно более близкое к x* за один шаг. Следующий шаг может быть сделан с сохранением той же цели и так далее, пока не будет исчерпано все время. Нужно определить соглашение о мере «расстояния». В общем виде это будет следующая функция:

                     (3)

Выбор коэффициентов Wi позволяет придать некоторым классам больший вес по сравнению с другими. Показатель  определяет степень важности, придаваемым большим отклонениям в каждом из классов. Таким образом, задача свелась к нахождению вектора r, который переводит систему из x(0) в x(1) такую, что расстояние от x(1) до x* минимально. Вычисления оптимальной структуры кафедры показывают, что оптимальный состав кафедры ВиПМ существенно отличается от предельной структуры и представляет собой следующий состав за 10 лет преобразований:6 ассистентов, 25 доцентов и 11 докторов наук.

Модель системы кадров, которая обсуждается в этой статье и статьях [1,2] является слишком упрощенной. Составляющие потерь не могут всегда считаться постоянными в пределах одного класса. Все составляющие склонны к изменениям со временем и при некоторых условиях можно планировать эти изменения. Существует очевидная аналогия между запасами и потоками. Следовательно, сформулированный в этих трех статьях подход может быть обобщен на значительно более общие условия, то есть на развитие факультета, университета и так далее.

Построенная модель может использоваться для прогнозирования и для управления. При прогнозировании вводимые допущения должны отображать - настолько точно, насколько возможно,- реальное поведение системы в недавнем прошлом. Если модель используется для управления, то допущения распадаются на две группы. Первая группа - это те допущения, которые относятся к неуправляемым аспектам системы, должны, как и в случае прогнозирования, отражать действительность. Вторая группа - это допущения, которые к переменным управления, они имеют другой хаpaктер: они касаются возможностей администрации и должны основываться на сведения об организации системы.

СПИСОК ЛИТЕРАТУРЫ:

  1. Добрынина Н.Ф. Повышение качества преподавания математики методом прогнозирования структуры преподавательского состава кафедры. / Вторая Международная научно-техническая конференция «Аналитические и численные методы моделирования естественнонаучных и социальных проблем. Сб. статей. Пенза. -2007. с. 341-347.
  2. Добрынина Н.Ф. Управление структурой преподавательского состава кафедры математики университета. / Вторая Международная научно-техническая конференция «Аналитические и численные методы моделирования естественнонаучных и социальных проблем. Сб. статей. Пенза, 2007. с. 338-341.


АТОМ. СТРОЕНИЕ И ДИНАМИКА (электронное издание)

АТОМ. СТРОЕНИЕ И ДИНАМИКА (электронное издание) Статья в формате PDF 278 KB...

26 11 2022 4:27:51

Экобиоморфный состав флоры мелов

Экобиоморфный состав флоры мелов Статья в формате PDF 130 KB...

23 11 2022 16:58:24

О СТРОЕНИИ И ТОПОГРАФИИ КРАНИАЛЬНЫХ БРЫЖЕЕЧНЫХ ЛИМФАТИЧЕСКИХ УЗЛОВ У НОВОРОЖДЕННЫХ БЕЛОЙ КРЫСЫ

Краниальные брыжеечные лимфатические узлы у новорожденных белой крысы располагаются главным образом вдоль ствола одноименной артерии и отличаются слабо дифференцированной паренхимой. ...

22 11 2022 0:46:36

ПЕРЕМЕЩЕНИЕ жидких ФРАКЦИЙ В ЖЕЛОБЕ

ПЕРЕМЕЩЕНИЕ жидких ФРАКЦИЙ В ЖЕЛОБЕ Статья в формате PDF 369 KB...

11 11 2022 3:56:43

СОЦИАЛЬНЫЕ ФАКТОРЫ ЭЛЕКТОРАЛЬНОЙ ГЕОГРАФИИ

СОЦИАЛЬНЫЕ ФАКТОРЫ ЭЛЕКТОРАЛЬНОЙ ГЕОГРАФИИ Территориальные различия электopaльных предпочтений отличаются высокой устойчивостью в современной России. Этот феномен подтверждается методом корреляционного анализа. Выделяются шесть основных социальных факторов, влияющих на различия в электopaльной географии: 1) доля городского населения; 2) приближенность к центру; 3) этнический фактор; 4) доля молодежи в составе населения; 5) преобладающие виды деятельности населения; 6) структура социальных связей. Электopaльное поведение в России менее индивидуально, чем в западных странах, большее значение имеют объективные социальные факторы. ...

07 11 2022 18:48:45

К ЗАДАЧЕ О СОЗДАНИИ ПЛАТФОРМЕННЫХ МЕХАНИЗМОВ

К ЗАДАЧЕ О СОЗДАНИИ ПЛАТФОРМЕННЫХ МЕХАНИЗМОВ Статья в формате PDF 505 KB...

04 11 2022 15:32:15

ЧАЙКОВСКИЙ ВИТОЛЬД КАЗИМИРОВИЧ

ЧАЙКОВСКИЙ ВИТОЛЬД КАЗИМИРОВИЧ Статья в формате PDF 327 KB...

01 11 2022 13:12:31

ГРАНИЦЫ ОБРАЗОВАТЕЛЬНОГО ПРОСТРАНСТВА

ГРАНИЦЫ ОБРАЗОВАТЕЛЬНОГО ПРОСТРАНСТВА В представленной статье дается попытка разграничения понятия «образовательное прострaнcтво» на основе анализа имеющихся дефиниций и примере формирования целостного образовательного прострaнcтва в профессиональном образовательном учреждении, интегрирующем его начальный, средний и высший уровни. ...

26 10 2022 19:23:36

ВИРТУАЛЬНЫЕ ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

ВИРТУАЛЬНЫЕ ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ Статья в формате PDF 265 KB...

23 10 2022 1:13:43

ОБЗОР ПРОГРАММНЫХ ПРОЦЕССОРОВ ДЛЯ ПЛИС ФИРМЫ XILINX

ОБЗОР ПРОГРАММНЫХ ПРОЦЕССОРОВ ДЛЯ ПЛИС ФИРМЫ XILINX Статья в формате PDF 268 KB...

20 10 2022 11:44:29

ЖИЖИН КОНСТАНТИН СЕРГЕЕВИЧ

ЖИЖИН КОНСТАНТИН СЕРГЕЕВИЧ Статья в формате PDF 114 KB...

18 10 2022 5:12:17

СИДНЕВ АЛЕКСАНДР ВАЛЕНТИНОВИЧ

СИДНЕВ АЛЕКСАНДР ВАЛЕНТИНОВИЧ Статья в формате PDF 109 KB...

17 10 2022 23:13:37

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::