О МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИЕ НЕЛИНЕЙНЫХ ВОЛНОВЫХ ПРОЦЕССОВ
1. В работе даются модели, порождающие нелинейные и (или) сильно нелинейные волн в струнах и других одномерных объектах.
Нелинейные волновые процессы обычно моделируются при помощи нелинейных дифференциальных уравнениях в частных производных. Для нелинейных аналогов волнового уравнения имеем [1]:
utt - с2uxx=h(u,ut,ux,t,x), (1)
где h - нелинейная функция, структура которой определяется геометрическими и (или) физическими особенностями задачи. Раскладывая функцию h в ряд, в разных приближениях можно получать модели нелинейных волновых процессов.
Нелинейные волновые эффекты многочисленны и многообразны. Показывается, что при рассмотрении простейших нелинейных моделей проявляются такие весьма хаpaктерные и важные явления как «деформирование» и «опрокидывание» профилей волн [1].
Весьма важной моделью нелинейных волн служит нелинейное уравнение Клейна-Гордона:
utt - с2uxx=Ф(u), (2)
где Ф(u) - некоторая гладкая или разрывная функция, описывающая распределенные нелинейные восстанавливающие силы. Влинейном приближении Ф(u)=-ku (k>0) имеем известную модель струны «на упругой постели».
2. Весьма важную модель - модель нелинейной струны можно получить, учитывая в представлении для упругой энергии системы в первом приближении члeн, кубический по смещению [1]. Ограничиваясь рассмотрением достаточно длинных волн, можно получить дополнительные члeны уравнения движения, зависящие лишь от деформации ux , но не от ее производных. Кроме того, в первом приближении можно записать можно записать также и члeн, учитывающий дисперсию. Тогда уравнение нелинейной струны (или уравнение продольных колебаний нелинейного стержня) можно привести к виду [1]:
utt - с2(uxx+l2u4x - buxuxx )=0, (3)
где c - по-прежнему скорость распространения волн в линейной модели, l - масштабный, считающийся малым, b - также малый параметр, хаpaктеризующий интенсивность нелинейных сил. Выбор положительного знака перед l2 соответствует предположению, что среда имеет отрицательную дисперсию и групповая скорость убывает с ростом волнового числа. Дисперсия в данной модели оказывается нормальной. Выбор противоположенного знака привел бы к модели, аналогичной известной модели балки Бернулли [1].
Если Ф(u) - суть сингулярная обобщенная функция описывающая условия удара, то приходим к нелинейному уравнению Клейна-Гордона, моделирующее виброударную систему с паспределенными ударными элементами. [2]..
3. Весьма интересную базовую модель дает называемое уравнение Кортевега - де Фриза, (уравнение КдФ) оказывающееся принципиальным при рассмотрении моделей нелинейных волн [1].
wt + wx+εwxxx +μwwx =0. (4)
Если перейти к подвижной системе координат x→x-t, то вместо (4) получим
wt +μwwx +εwxxx =0. (5)
Данное уравнение также называют уравнением Кортевега - де Фриза. При замене w→ - w вместо (.14) будем иметь:
wt + wx+εwxxx -μwwx =0. (6)
Если продифференцировать это уравнение по t и заменить значение wt его представлением из (6), то:
wtt - wxx- 2εw4x + 2μ(wwx)x+εμ(2wwxx+0,5wx2)хх - ε2 w6x -μ2(w2wx)x = 0, (7)
то есть (3) и (7) совпадают с точностью до члeнов ~ε2 и ~μ2 . Следовательно, решения уравнения КдФ (6) точно удовлетворяют уточненному уравнению нелинейной струны (7) и приближенно исходному уравнению (3). О других примерах волновых уравнений, множество решений которого содержит решения уравнения КдФ см. например в [1].
Работа выполнена при поддержке РФФИ (проект № 04-01-00611).
СПИСОК ЛИТЕРАТУРЫ:
- Уизем Дж. Линейные и нелинейные волны.- М.: Наука-1997. - 622 с.
- Крупенин В.Л. К описанию динамических эффектов, сопровождающих колебания струн вблизи однотавровых ограничителей// ДАН. - . 2003,. № 388 (3).- С.12-15.
24 03 2025 15:28:43
Статья в формате PDF
112 KB...
23 03 2025 1:21:53
Статья в формате PDF
116 KB...
22 03 2025 23:50:43
В работе предложена математическая модель энергетического метаболизма. Согласно авторской метаболической реконструкции патобиохимии сердца, в модели предполагается, что в основе кардиосклероза (возникновения нерабочих участков в миокарде, усиливающих сердечную недостаточность) лежит аутовоспалительный процесс на базе медленного (недели, годы) «неправильного» взаимодействия депо углеводов и жиров. Модель позволяет сформулировать предсказание, что при определенных медленных сценариях тренировки сердца и защите его от свободных радикалов при стрессе цитопротекторами и пептидотерапией могут возникать снижение хаоса и условия прекондиционирования, тесно связанные с условиями для обновления клеток в сердце на базе стволовых клеток и камбия. Клинические исследования проф. А.Э. Горбунова; проф. А.Н. Флейшмана, д.п.н. Греца Г.Н. подтверждают модельную гипотезу.
...
21 03 2025 14:41:33
20 03 2025 6:59:29
Статья в формате PDF
116 KB...
19 03 2025 6:53:34
Приведены результаты научных исследований сохранения и улучшения экологического состояния агроландшафтов Казахстана. Проведены экспериментальные работы с учетом дифференциации зональных систем земледелия. Исследования показали, что оценка в эрозионных агроландшафтах адаптивности основной обработки богарных светло-каштановых почв на уровне мезо – и микроландшафтных условий, вспашка более эффективна в северных и восточных экспозиций склонов, где плотность пахотного слоя была в среднем за вегетацию зерновых культур в основном на 0,02–0,04 г/см3 меньше по сравнению с плоскорезной обработкой. На склонах южной и западной экспозиций наоборот плоскорезная обработка способствовала снижению уплотненности почвы, на 0,03–0,05 г/см3 и повышению ее противоэрозионной устойчивости в 1,2–1,5 раза. На склонах северной и восточной экспозиции вспашка обеспечивает более эффективную борьбу с сорняками, а плоскорезная – на южных и западных склонах более высокое и равномерное накопление снега и рациональное использование влаги. Важнейшим звеном улучшения экологии почв является оптимизация севооборотов. В статье предлагается построить севооборот по количеству оставляемого в почве органического вещества, каждым предшественником. Для совершенствования севооборотов рекомендуется сидерация, уплотненные посевы, размещение многолетних и однолетних трав, применения органических удобрений и др.
...
18 03 2025 10:23:43
Статья в формате PDF
104 KB...
17 03 2025 14:25:54
15 03 2025 23:22:39
Статья в формате PDF
120 KB...
14 03 2025 4:26:29
Статья в формате PDF
256 KB...
13 03 2025 20:21:51
Статья в формате PDF
128 KB...
11 03 2025 20:23:59
Статья в формате PDF
138 KB...
10 03 2025 19:41:47
Статья в формате PDF
102 KB...
09 03 2025 17:10:18
Статья в формате PDF
255 KB...
08 03 2025 8:55:29
Статья в формате PDF
106 KB...
07 03 2025 4:48:15
Современный этап развития мирового и отечественного языкознания хаpaктеризуется антропоцентрической направленностью лингвистических исследований. Антропоцентризм является одним из фундаментальных свойств человеческого языка, так как взаимосвязь и взаимообусловленность языка и человека очевидна и не может вызывать никаких сомнений. «Идею антропоцентричности языка в настоящее время можно считать общепризнанной: для многих языковых построений представление о человеке выступает в качестве естественной точки отсчета» [1, 5]. Антропоцентрический подход в изучении языка или антропоцентрическая парадигма предполагает анализ человека в языке и языка в человеке. В.А. Маслова пишет, что «…антропоцентрическая парадигма выводит на первое место человека, а язык считается конституирующий хаpaктеристикой человека, его важнейшей составляющей. Человеческий интеллект, как и сам человек, немыслим вне языка и языковой способности как способности к порождению и восприятию речи. Если бы язык не вторгался во все мыслительные процессы, если бы он не был способен создавать новые ментальные прострaнcтва, то человек не вышел бы за рамки непосредственно наблюдаемого. Текст, создаваемый человеком, отражает движении человеческой мысли, строит возможные миры, запечатлевая в себе динамику мысли и способы ее представления с помощью средств языка» [1, 8].
...
05 03 2025 11:34:51
Статья в формате PDF
122 KB...
02 03 2025 1:12:14
Статья в формате PDF
119 KB...
01 03 2025 6:25:12
Статья в формате PDF
131 KB...
26 02 2025 21:53:10
Статья в формате PDF
119 KB...
25 02 2025 22:42:50
Статья в формате PDF
116 KB...
24 02 2025 18:46:46
23 02 2025 9:20:10
Статья в формате PDF
256 KB...
22 02 2025 11:52:59
Статья в формате PDF
121 KB...
21 02 2025 0:50:18
Статья в формате PDF
102 KB...
20 02 2025 18:24:27
Статья в формате PDF
154 KB...
19 02 2025 14:13:30
Статья в формате PDF
288 KB...
18 02 2025 0:16:22
17 02 2025 9:41:33
Статья в формате PDF
109 KB...
16 02 2025 18:51:24
Статья в формате PDF
113 KB...
14 02 2025 18:44:34
Проведено изучение состояние микрофлоры у пациентов после различных операций, выполненных по поводу повреждений селезенки в отдаленном послеоперационном периоде. В результате проведенного исследования установлено, что сохранение селезенки предотвращает изменения микрофлоры, так как полученные результаты соответствовали данным группы сравнения. В тоже время, удаление селезенки приводит к нарушению микрофлоры.
...
13 02 2025 15:49:39
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::