О МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИЕ НЕЛИНЕЙНЫХ ВОЛНОВЫХ ПРОЦЕССОВ > Полезные советы
Тысяча полезных мелочей    

О МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИЕ НЕЛИНЕЙНЫХ ВОЛНОВЫХ ПРОЦЕССОВ

О МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИЕ НЕЛИНЕЙНЫХ ВОЛНОВЫХ ПРОЦЕССОВ

Крупенин В.Л. Статья в формате PDF 105 KB

1. В работе даются модели, порождающие нелинейные и (или) сильно нелинейные волн в струнах и других одномерных объектах.

Нелинейные волновые процессы обычно моделируются при помощи нелинейных дифференциальных уравнениях в частных производных. Для нелинейных аналогов волнового уравнения имеем [1]:

utt - с2uxx=h(u,ut,ux,t,x),                      (1)

где h - нелинейная функция, структура которой определяется геометрическими и (или) физическими особенностями задачи. Раскладывая функцию h в ряд, в разных приближениях можно получать модели нелинейных волновых процессов.

Нелинейные волновые эффекты многочисленны и многообразны. Показывается, что при рассмотрении простейших нелинейных моделей проявляются такие весьма хаpaктерные и важные явления как «деформирование» и «опрокидывание» профилей волн [1].

Весьма важной моделью нелинейных волн служит нелинейное уравнение Клейна-Гордона:

utt - с2uxx=Ф(u),                               (2)

где Ф(u) - некоторая гладкая или разрывная функция, описывающая распределенные нелинейные восстанавливающие силы. Влинейном приближении Ф(u)=-ku (k>0) имеем известную модель струны «на упругой постели».

2. Весьма важную модель - модель нелинейной струны можно получить, учитывая в представлении для упругой энергии системы в первом приближении члeн, кубический по смещению [1]. Ограничиваясь рассмотрением достаточно длинных волн, можно получить дополнительные члeны уравнения движения, зависящие лишь от деформации ux , но не от ее производных. Кроме того, в первом приближении можно записать можно записать также и члeн, учитывающий дисперсию. Тогда уравнение нелинейной струны (или уравнение продольных колебаний нелинейного стержня) можно привести к виду [1]:

utt - с2(uxx+l2u4x - buxuxx )=0,                                  (3)

где c - по-прежнему скорость распространения волн в линейной модели, l - масштабный, считающийся малым, b - также малый параметр, хаpaктеризующий интенсивность нелинейных сил. Выбор положительного знака перед l2 соответствует предположению, что среда имеет отрицательную дисперсию и групповая скорость убывает с ростом волнового числа. Дисперсия в данной модели оказывается нормальной. Выбор противоположенного знака привел бы к модели, аналогичной известной модели балки Бернулли [1].

Если Ф(u) - суть сингулярная обобщенная функция описывающая условия удара, то приходим к нелинейному уравнению Клейна-Гордона, моделирующее виброударную систему с паспределенными ударными элементами. [2]..

3. Весьма интересную базовую модель дает называемое уравнение Кортевега - де Фриза, (уравнение КдФ) оказывающееся принципиальным при рассмотрении моделей нелинейных волн [1].

wt + wx+εwxxx +μwwx =0.                              (4)

Если перейти к подвижной системе координат x→x-t, то вместо (4) получим

wt +μwwx +εwxxx =0.                                    (5)

Данное уравнение также называют уравнением Кортевега - де Фриза. При замене w→ - w вместо (.14) будем иметь:

wt + wx+εwxxx -μwwx =0.                             (6)

Если продифференцировать это уравнение по t и заменить значение wt его представлением из (6), то:

wtt - wxx- 2εw4x + 2μ(wwx)x+εμ(2wwxx+0,5wx2)хх - ε2 w6x 2(w2wx)x = 0,                  (7)

то есть (3) и (7) совпадают с точностью до члeнов ~ε2 и ~μ2 . Следовательно, решения уравнения КдФ (6) точно удовлетворяют уточненному уравнению нелинейной струны (7) и приближенно исходному уравнению (3). О других примерах волновых уравнений, множество решений которого содержит решения уравнения КдФ см. например в [1].

Работа выполнена при поддержке РФФИ (проект № 04-01-00611).

СПИСОК ЛИТЕРАТУРЫ:

  1. Уизем Дж. Линейные и нелинейные волны.- М.: Наука-1997. - 622 с.
  2. Крупенин В.Л. К описанию динамических эффектов, сопровождающих колебания струн вблизи однотавровых ограничителей// ДАН. - . 2003,. № 388 (3).- С.12-15.


ЗЕМЦОВА ВАЛЕНТИНА ИВАНОВНА

ЗЕМЦОВА ВАЛЕНТИНА ИВАНОВНА Статья в формате PDF 344 KB...

17 11 2022 11:57:34

ФОРМИРОВАНИЕ СЛИЗИСТОЙ ОБОЛОЧКИ ЖЕЛУДКА ЧЕЛОВЕКА В ЭМБРИОГЕНЕЗЕ

ФОРМИРОВАНИЕ СЛИЗИСТОЙ ОБОЛОЧКИ ЖЕЛУДКА ЧЕЛОВЕКА В ЭМБРИОГЕНЕЗЕ Статья посвящена актуальной морфологической проблеме – формирование слизистой оболочки желудка человека, в раннем эмбриогенезе. Проведен анализ и обобщение научных данных в отечественной и зарубежной литературе о формировании слизистой оболочки желудка. Рассматривается вопрос о процессе формирования врожденных пороков развития желудка. ...

15 11 2022 11:24:30

Особенности измерений и моделирования динамики расхода мелкого водотока родника «Хрустальная ель»

Особенности измерений и моделирования динамики расхода мелкого водотока родника «Хрустальная ель» Летом 2012 года был проведен мониторинг расхода воды на малом водотоке. Мерный сосуд был принят в виде ковша емкостью один литр. Все измерения проводились вечером с 17-00 часов. Поэтому текущее время берется целыми сутками. Модель динамики имеет две составляющие: первая составляющая является законом экспоненциального роста, а вторая волновым возмущением с переменными амплитудой и частотой колебания. Показана методика моделирования с процеДypaми: 1) выявление постоянного члeна; 2) по остаткам от постоянного члeна, последовательно усложняя конструкцию, идентифицируется волновая функция; 3) постоянный члeн совмещается с волновой функцией; 4) усложняется конструкция тренда до устойчивого не волнового закона. ...

12 11 2022 17:39:21

БЕРЕГОВАЯ ЗОНА ОЗЕРА БАЙКАЛ В СОВРЕМЕННЫХ УСЛОВИЯХ

БЕРЕГОВАЯ ЗОНА ОЗЕРА БАЙКАЛ В СОВРЕМЕННЫХ УСЛОВИЯХ Статья в формате PDF 119 KB...

05 11 2022 18:32:45

ГРЕХОПАДЕНИЕ В КОНТЕКСТЕ ПСИХОАНАЛИЗА

ГРЕХОПАДЕНИЕ В КОНТЕКСТЕ ПСИХОАНАЛИЗА Статья в формате PDF 92 KB...

03 11 2022 11:57:43

Правовые аспекты эвтаназии

Правовые аспекты эвтаназии Статья в формате PDF 102 KB...

26 10 2022 15:24:43

ХИТИН И ХИТОЗАН – МАТЕРИАЛЫ XXI ВЕКА

ХИТИН И ХИТОЗАН – МАТЕРИАЛЫ XXI ВЕКА Статья в формате PDF 254 KB...

19 10 2022 11:27:51

ОПЕРЕЖАЮЩЕЕ АНТИКРИЗИСНОЕ УПРАВЛЕНИЕ ПРЕДПРИЯТИЕМ

ОПЕРЕЖАЮЩЕЕ АНТИКРИЗИСНОЕ УПРАВЛЕНИЕ ПРЕДПРИЯТИЕМ В статье исследованы некоторые проблемы опережающего антикризисного управления предприятием. ...

18 10 2022 20:18:30

НОВЫЕ ВИДЫ ОВСЯНОГО ПЕЧЕНЬЯ

НОВЫЕ ВИДЫ ОВСЯНОГО ПЕЧЕНЬЯ Статья в формате PDF 522 KB...

17 10 2022 14:12:29

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::