МОЛЕКУЛЯРНО-КЛЕТОЧНЫЕ МЕХАНИЗМЫ ИНАКТИВАЦИИ СВОБОДНЫХ РАДИКАЛОВ В БИОЛОГИЧЕСКИХ СИСТЕМАХ > Полезные советы
Тысяча полезных мелочей    

МОЛЕКУЛЯРНО-КЛЕТОЧНЫЕ МЕХАНИЗМЫ ИНАКТИВАЦИИ СВОБОДНЫХ РАДИКАЛОВ В БИОЛОГИЧЕСКИХ СИСТЕМАХ

МОЛЕКУЛЯРНО-КЛЕТОЧНЫЕ МЕХАНИЗМЫ ИНАКТИВАЦИИ СВОБОДНЫХ РАДИКАЛОВ В БИОЛОГИЧЕСКИХ СИСТЕМАХ

Чеснокова Н.П. Понукалина Е.В. Бизенкова М.Н. В статье представлен обзор литературы относительно механизмов инактивации свободных радикалов в митохондриях, микросомах клеток и во внеклеточной среде. Сделан акцент на особенностях структуры и функции супероксиддисмутазы, каталазы, церулоплазмина, а также глутатионпероксидазы, подробно представлена хаpaктеристика низкомолекулярных антиоксидантов и механизмов их действия. Статья в формате PDF 178 KB Как известно, одну из первых линий защиты клеток от агрессивного действия свободных радикалов обеспечивают ферменты - супероксиддисмутаза (СОД), каталаза, глутатионзависимые пероксидазы и трaнcферазы, удаляющие органические перекиси [14,16,22,30]. Различаясь по строению активного центра и структуре полипептидной цепи, все СОД (металлоферменты) катализируют одну и ту же реакцию дисмутации:

ОО- +ОО- + 2Н+ → О2 + НООН

При участии СОД обеспечивается инактивация активных форм кислорода, образуемых в ходе реакций переноса электронов, при гипоксиях различного генеза, на фоне гипербарической оксигенации и других патогенных факторов [7,8].

Судьба перекиси водорода, образуемой в процессе реакций дисмутации, различна.

Частично перекись водорода разлагается при участии каталазы, проявляющей активность почти во всех клетках организма человека, особенно в печени, почках, эритроцитах:

2О2 → Н2О + О2

В печени, почках, нейтрофильных лейкоцитах обнаруживается пероксидазная активность, обеспечивающая инактивацию перекиси водорода в следующей реакции:

Н2О2 + Н2О2 → 2 Н2О2 + RО2

В нейтрофильных лейкоцитах имеется миелопероксидаза; в эритроцитах, печени, хрусталика глаза содержится глутатионпероксидаза, окисляющие соответственно галогены с образованием бактерицидных радикалов или восстановленный глутатион [23]. Миелопероксидаза фагоцитов катализирует реакцию образования гипохлорита с высокой бактерицидной активностью:

Н2О2 + Cl- → Н2О + ClO- (гипохлорит)

Гипохлорит разрушает стенку бактериальных клеток [28,29].

В присутствии ионов двухвалентного железа перекись разлагается в реакции Фентона с образованием гидроксильного радикала (OH):

Н2О2 + Fe2+ → Fe3+ + OH- + OH

Радикалы гидроксила чрезвычайно активны и разрушают различные по структуре молекулы [3,4,5,14,16].

Исключительно важным моментом эффективности ферментного звена антиоксидантной системы является сбалансированность активности СОД, каталазы и пероксидазы [8,11]. Подавление активности одного из ферментов антиоксидантной системы может привести к избыточному накоплению активных форм кислорода и деструкции клеток.

Установлено, что накопление в среде перекиси водорода ведет к инактивации СОД. Полагают, что уровень активности внутриклеточных ферментативных антиоксидантных систем генетически детерминирован, причем избыточное накопление в клетках супероксидного анион-радикала или перекиси водорода сопровождается депрессией участков генома, ответственного за активность внутриклеточных ферментативных антиоксидантных систем [8,12]. У человека ген, кодирующий синтез СОД, локализован в 21-й хромосоме. При сохраненной активности каталазы активность СОД не подавляется.

В нормальных условиях у человека содержание ферментных антиоксидантов не зависит от возраста, пола, массы тела. В то же время при различных патологических состояниях концентрация и активность ферментов антиоксидантной системы может изменяться в различных направлениях.

Как известно, главной дышащей органеллой клетки является митохондрия, содержащая большое количество активных ферментов и коферментов в дыхательной цепи и являющаяся потенциальным источником свободных радикалов при одноэлектронном восстановлении кислорода [32,33,34,35]. В связи с этим митохондрии обладают последовательной системой защиты от активных форм кислорода, включающей следующие этапы:

  1. Поглощение кислорода активной цитохромоксидазой, обеспечивающей четырехэлектронное восстановление кислорода с образованием воды.
  2. Реокисление О2- в кислород под действием окисленного цитохрома с, десорбированного с внутренней митохондриальной мембраны в межмембранное прострaнcтво.
  3. Tрaнcформация О2- под влиянием СОД митохондриального матрикса в перекись водорода с последующей утилизацией перекиси при участии глутатионпероксидазы и каталазы в матриксе митохондрий.
  4. Удаление активных форм кислорода в матриксе при участии токоферола, КоQH2, аскорбита и других антиоксидантов [34,37].

Важнейшим антиоксидантом митохондрий является коэнзим Q10, или убихинон (вездесущий хинон), содержащийся пpaктически во всех тканях организма. Как известно, коэнзим Q10 является переносчиком электронов в дыхательной цепи, в то же время эффективно защищает липиды биологических мембран и липопротеиды крови от перекисного окисления, пpeдoxpaняет ДНК и белки от окислительной модификации [17,20].

Индукция активных форм кислорода возникает и в процессе окислительно - восстановительных, оксигеназных реакций в микросомах, обладающих и определенным механизмом защиты от свободных радикалов.

В настоящее время известно более 1000 ферментов класса оксигеназ и около 1200 генов, кодирующих их структуру [25]. Оксигеназы, как известно, разделяются на диоксигеназы, внедряющие 2 атома кислорода в молекулу субстрата, и монооксигеназы, катализирующие реакции с включением одного атома в субстрат, в то время как другой атом восстанавливается до воды. Наиболее многочисленными являются монооксигеназые реакции с участием цитохрома Р-450 [10,25]. У человека суперсемейство цитохрома Р-450 представлено 57 функционально активными генами [42]. Монооксигеназные реакции играют важную роль не только в инактивации ксенобиотиков, но и в метаболизме витаминов, жирных кислот, нейротрaнcмиттеров, стероидных гормонов и др. соединений [10,25]. В настоящее время очевидно, что образование активных форм кислорода происходит и в процессах микросомального окисления.

Установлено, что в качестве восстановителя в монооксигеназных реакциях участвует НАД•Н или НАДФ•Н. Предполагается, что образование активных форм кислорода возможно при участии «НАДФ•Н - цитохром Р-450 - редуктаза → цитохром в5», а также при распаде реакционных пероксо- (Fe3+ - О2-) и гидропероксокомплексов (Fe3+ - НО2), (Fe2+ - НО2). Продукция активных метаболитов кислорода зависит от изоформы Р-450, рН среды, концентрации кислорода, наличия восстановителей и субстрата окислителя [7,25].

В связи с постоянным образованием свободных радикалов микросомы обладают специализированными системами антиоксидантной защиты:

  1. во-первых, активные формы кислорода (АФК) вызывают деградацию определенных изоформ цитохрома Р-450, инициирующего образование свободных радикалов;
  2. во-вторых, АФК вызывают экспрессию генов, кодирующих ферменты антиоксидантной защиты клеток [11,14,24,25].

Касаясь особенностей функционирования ферментного звена антиоксидантной системы, следует отметить, что реакции дисмутации супероксид анион - радикала и разложения перекиси водорода экзотермичны, а катализирующие эти реакции СОД и каталаза не нуждаются в кофакторах, что делает их активность не зависящей от функционирования других клеточных структур. СОД ускоряет спонтанную реакцию в 200 раз.

Обнаружено несколько изоэнзимных форм СОД, отличающихся строением активного центра. У эукариотов Cu-, Zn-содержащая СОД локализуется в основном в цитозоле эритроцитов, в межмембранном прострaнcтве митохондрий, в цитоплазме и ядре нервных клеток. Фермент чувствителен к цианиду, представляет собой металлопротеид с ММ 32000-33000, состоит из двух субъединиц, каждая из которых связывает 1 атом Cu и 1 атом Zn [12,31].

Mn-СОД локализована в митохондриях печени и миокарда эукариот, вблизи анионных каналов. Для микроорганизмов хаpaктерны железосодержащий и марганецсодержащий изоферменты. Mn-СОД состоит из 4 субъединиц с ММ 20 000 каждая, механизм действия энзима, вероятно, подобен действию Cu-, Zn-СОД-фермента, то есть металл в активном центре попеременно меняет свою валентность: Mn3+, Mn2+ [2,12,22,23,27].

Супероксиддисмутазную активность могут проявлять комплексы меди с аминокислотами и пептидами, а также многие медьсодержащие белки.

Описанные выше изоферментные формы СОД являются внутриклеточными ферментами, в межклеточной жидкости (плазма крови, лимфа, синовиальная жидкость) они разрушаются в течение 5-10 минут. В то же время обнаружена экстрацеллюлярная высокомолекулярная форма СОД (ММ 120 000 Д), хорошо связывающаяся гепаринсульфатом гликокаликса эндотелиоцитов, локально защищает их от свободных радикалов. Экстрацеллюлярная СОД не связывается с лейкоцитами и эритроцитами, не участвует в регуляции продукции активных форм кислорода гранулоцитами в процессе киллинга [13]. Эктрацеллюлярная СОД локально защищает эндотелиоциты от повреждения активными радикалами кислорода [28,29].

СОД существенно ускоряет дисмутации супероксид анион-радикала. Однако, несмотря на высокую специфичность фермента, при определенных условиях Cu-СОД может взаимодействовать с перекисью водорода и выступать в качестве прооксиданта.

В последние годы были синтезированы модифицированные препараты СОД и каталазы, ассоциированные с иммуноглобулинами, сывороточным альбумином, высокомолекулярными спиртами, в частности, полиэтиленгликолями, что обеспечивало стабильность ферментов и длительность их циркуляции в крови [26]. Подобные ассоциированные формы фермента нашли применение в эксперименте при эндотоксикозе, инфаркте миокарда, региональной ишемии, ожогах кожи, а также при стрессовых и воспалительных повреждениях тканей [1, 15, 18, 21, 22, 23, 26].

Церулоплазмин или гoлyбая феррооксидаза - гликопротеид сыворотки крови, образующийся в печени, катализирует реакцию:

4Fe2+ + 4H+ O2 → 4Fe3+ + H2O,

способствует окислению полиаминов, полифенолов, аскорбиновой кислоты, возможно, участвует в трaнcпорте меди. Прямая антиоксидантная функция определяется супероксиддисмутазной и ферриоксидазной активностью, а непрямые антиоксидантные свойства связаны с окислением Fe2+ и аскорбината, потенциальных источников супероксидного анион-радикала. Это основной реактант острой фазы воспаления [16].

Как указывалось, в процессе дисмутации супероксидного анион-радикала образуется перекись водорода, восстанавливаемая до воды в основном каталазой и глутатионпероксидазой [12,22,27].

Каталаза - хромопротеид с ММ около 240 000 Д, состоит из 4 субъединиц, имеющих по одной группе гема, локализуется в основном в пероксисомах, частично - в микросомах и в меньшей мере - в цитозоле. Полагают, что каталаза не имеет высокого сродства к перекиси водорода и не может эффективно обезвреживать это соединение при низких концентрациях, имеющихся в цитозоле. В пероксисомах, где концентрация перекиси водорода высока, каталаза активно разрушает ее.

Разложение перекиси водорода каталазой осуществляется в два этапа:

Fe3+-каталаза + 2 H2O2 → окисленная каталаза + H2O2 → Fe3+-каталаза + H2O2 + O2.

При этом в окисленном состоянии каталаза работает как пероксидаза. Субстратами в пероксидазной реакции могут быть этанол, метанол, формиат, формальдегид и другие доноры водорода [12,22,27].

Следует отметить, что около 0,5% кислорода, образующегося в результате разложения перекиси водорода, возникает в возбужденном, синглетном состоянии и таким образом в процессе разложения перекиси водорода вновь генерируются активные формы кислорода.

Активности каталазы и СОД коррелируют между собой, что может быть связано с переключением потока электронов с одной цепи трaнcпорта на другую. В этих условиях СОД и каталаза действуют как звенья одной системы утилизации кислорода, размещенные в разных участках клетки.

Максимальная концентрация каталазы обнаружена в эритроцитах [12,22,27,28,29].

Важнейшей системой инактивации свободных радикалов являются восстановленный глутатион и комплекс ферментов - глутатионпероксидазы, глутатионтрaнcферазы и глутатионредуктазы.

Глутатион синтезируется в печени, откуда трaнcпортируется в различные органы и ткани, обеспечивает восстановление дисульфидных групп белков, дигидроаскорбиновой кислоты, с участием глутатионтрaнcферазы образует конъюгаты в печени с электрофильными соединениями и последующим выведением их с мочой [6,51].

Инактивация перекиси водорода в клетках обеспечивается также глутатионпероксидазой (ГПО), последняя является Se-содержащим ферментом, около 70% ее локализовано в цитоплазме и около 30% - в митохондриях всех клеток млекопитающих [19]. Глутатионпероксидаза - белок с ММ 84000-88000, состоит из 4 идентичных субъединиц, каждая из которых включает 1 атом Se.

Глутатионпероксидаза катализирует реакцию восстановления гидроперекиси с помощью глутатиона, обладает широкой субстратной специфичностью по отношению к гидроперекисям, но абсолютно специфична к глутатиону [30].

Сродство глутатионпероксидазы и перекиси водорода выше, чем у каталазы, поэтому первая более эффективно работает при низких концентрациях субстрата, в то же время в защите клеток от окислительного стресса, вызванного высокими концентрациями перекиси водорода, ключевая роль принадлежит каталазе. Последнее особенно четко продемонстрировано на эндотелиальных клетках.

В клетках млекопитающих, кроме Se-зависимой ГПО, выявлена ГПО без Se с ММ 39000-46000, катализирующая восстановление гидроперекисей органических соединений, в том числе и полиненасыщенных жирных кислот, но ее эффективность в отношении перекиси водорода чрезвычайно низка.

Стресс через a-адренергические рецепторы, цАМФ и протеинкиназу стимулирует активность ГПО [19].

Бесселеновая глутатионпероксидаза локализована в митохондриальных мембранах печени, почек, сердца, в то время как селеновая - в эритроцитах.

ГПО принадлежит активная роль в защите лизосомальных мембран от перекисного окисления [40,44].

ГПО элиминирует перекиси стеринов и нуклеиновых кислот, является адаптивным ферментом, активность которого регулируется продуктами липопероксидации и активными формами кислорода. Важным компонентом антиоксидантной системы является глутатионтрaнcфераза, ингибирующая инициацию ПОЛ и обезвреживающая токсические метаболиты ПОЛ. Фермент активируется через цАМФ. Тканевая ГПО, по мнению ряда авторов, представляет собой изоформу глутатионтрaнcферазы [11,19].

В клетках млекопитающих выделяют семейство мультифункциональных белков - глутатионтрaнcфераз, использующих глутатион для конъюгации с гидрофобными соединениями и восстановление органических перекисей. Эти ферменты локализованы в основном в цитозоле клеток. Основная функция глутатионтрaнcфераз в печени - защита клеток от ксенобиотиков и продуктов ПОЛ посредством их восстановления при участии глутатиона [23].

НИЗКОМОЛЕКУЛЯРНЫЕ АНТИОКСИДАНТЫ

Класс низкомолекулярных антиоксидантов включает разнообразные соединения, отличающиеся по структуре и источникам их образования. К ним относятся глутатион, аскорбиновая кислота, мочевина, мочевая кислота, низкомолекулярные антиоксиданты липидной фазы [4,5,9,36,51].

Важную роль в инактивации свободных радикалов отводят внутриклеточным и внеклеточным ловушкам, обеспечивающим обрыв цепи свободнорадикального окисления [38,39,48].

Эффективными «перехватчиками» радикалов являются фенольные антиоксиданты, в частности, простые фенолы, нафтолы и окси-производные других ароматических соединений. В настоящее время выделено несколько тысяч фенольных соединений, среди которых выраженным антиоксидантным эффектом обладают витамины Е и К, убихиноны, триптофан и фенилаланин, а также большинство растительных и животных пигментов, в частности, каротиноиды, флавоноиды, фенокарбоксильные кислоты [43,45,46,47].

Фенольные антиоксиданты (ликопен, каротины, билирубин и a-токоферол) служат ингибиторами супероксидного анион-радикала, синглетного кислорода, гидроксильного радикала [24,25].

Значение неферментных низкомолекулярных антиоксидантов трудно переоценить, особенно в условиях окислительного стресса. Когда возникает быстрое истощение конститутивного пула ферментов свободными радикалами и необходимо значительное время для их синтеза de novo [10,14,21].

Большое биологическое значение для человека имеет антиоксидант - a-токоферол. он жирорастворим, его основная локализация - гидрофобный слой биологических мембран; инактивирует главным образом радикалы жирных кислот.

Около 50% клеточного токоферола локализовано в ядре, 30% - в мембранах митохондрий, 20% - в микросомальной мембране.

Недостаток витамина Е способствует деструкции мембран и экскреции креатина с мочой. Витамин Е - мощный антимутаген, в физиологических концентрациях является регулятором тканевого дыхания, а антиоксидантные свойства его проявляются при 10-15-кратном повышении этих доз [39]. Кроме a-токоферола, в клетках содержатся водорастворимые антиоксиданты, в том числе аскорбат, которые реагируют с более широким спектром свободных радикалов и поддерживают содержание токоферола.

Аскорбиновая кислота может выступать в качестве донора и акцептора ионов водорода благодаря наличию в структуре двух фенольных групп, ее антиоксидантные свойства хаpaктеризуются широким спектром инактивирующего действия на различные свободные радикалы. Аскорбиновая кислота превосходит другие антиоксиданты плазмы крови в защите липидов от перекисного окисления [37].

Обращает на себя внимание тот факт, что в присутствии ионов Fe или Cu аскорбиновая кислота становится мощным прооксидантом.

Антиоксидантные свойства аскорбиновой кислоты связаны с ее оксиредуктазными переходами. Теряя атом водорода, аскорбиновая кислота превращается в радикал - монодегидроаскорбиновую кислоту, проявляющую прооксидантный эффект, потеря еще одного атома водорода приводит к образованию дегидроаскорбиновой кислоты. При этом участвует фермент, содержащий медь - аскорбатоксидаза [50,51].

Известно, что аскорбиновая кислота восстанавливает продукт окисления токоферола - a-токофероксид в a-токоферол. Витамины P и C также восстанавливаются. Аскорбиновая кислота более стабильна в присутствии метилметионина, обеспечивающего не только восстановление дегидроаскорбиновой кислоты, но и полноценность функционирования глутатионового звена антиоксидантной системы. Аскорбат играет важную роль среди водорастворимых антиоксидантов в защите липопротеидов крови [12,22,27].

Важная роль в антиоксидантной защите организма отводится SH-содержащим соединениями, к числу которых относятся помимо трипептида - глутатиона цистеин, цистин и метионин.

SH-соединениям отводится ведущая роль в защите клеток от радикала OH. В связи с коротким периодом жизни и радиусом диффузии OH в биологических системах указанное соединение не подвергается ферментативной инактивации и в то же время может оказать сильное цитотоксическое и мутагенное действие, которое определяет значимость SH-содержащих соединений - активных перехватчиков OH-радикалов.

При различных стрессовых воздействиях, под влиянием эффектов токсических и ферментативных факторов патогенности различных инфекционных возбудителей, в частности, чумы, анаэробной газовой инфекции, стрептостафилококковой групп бактерий, наблюдается обратимая окислительная модификация SH-групп, приводящая к увеличению дисульфидных групп, что является типовой неспецифической реакцией организма на действие экстремального раздражителя [41].

Однако изменение соотношения восстановленных и окисленных тиогрупп в сторону преобладания последних изменяет состояние проницаемости клеточных мембран, их адгезивные свойства, приводит к резкому угнетению функции серосодержащих ферментов или коферментов (липоевой кислоты, коэнзима А, глутатиона), нарушению работы тиоловых металлопротеидов (цитохром P-450), ряда гормональных рецепторов и факторов трaнcкрипции [42].

Антиоксидантные свойства глутатиона определяются как непосредственным взаимодействием с АФК и обменными реакциями с дисульфидными связями, так и функционированием ряда ферментов глутатионового цикла, из которых главная глутатионпероксидаза и глутатион - S - трaнcфераза [51]. Глутатион играет важную роль в антиоксидантной защите не только при гипоксических, но и гипероксических состояниях, ограничивающих свободнорадикальное окисление. Глутатион обеспечивает формирование антиоксидантного потенциала в эритроцитах, кроветворных клетках, поддерживает пул восстановительного аскорбата [50,51].

Из биофлавоноидов наиболее изучены антиоксидантные свойства кверцитина и рутина, способных за счет ортогидроксилов фенольного кольца С быть донорами водорода. Биофлавоноиды гасят супероксидный анион-радикал, проявляют антиатерогенное, гипохолестеринемическое действие.

К низкомолекулярным антиоксидантам относятся мочевина и мочевая кислота. Как известно, образование мочевины осуществляется в орнитиновом цикле из аммиака, хотя источником мочевины могут быть гуанидиновые соединения. В эритроцитах мочевина связывается с гемоглобином, в сыворотке крови - с альбумином; она легко проникает через гистогематический барьер. Антиоксидантный эффект мочевины связан со стабилизацией мембран и модификацией ферментов, тем самым сокращая число железосодержащих центров перекисного окисления липидов [9].

Окислительно-восстановительные реакции мочевой кислоты тесно связаны с аскорбиновой кислотой. Мочевая кислота, как и аскорбат, способна вступать в обменные реакции с АФК, ингибировать ПОЛ, оказывает выраженный протективный эффект по отношению к Fe- и рН - индуцированному окислению аскорбата в сыворотке крови [6].

Резюмируя вышеизложенное в целом, следует заключить, что в целостном макроорганизме находятся в динамическом равновесии системы генерации свободных радикалов, в частности, свободных форм кислорода, и антирадикальной, антиоксидантной защиты.

Нарушение этого взаимодействия нередко приводит к дестабилизации биологических мембран, активации процессов липопероксидации, расстройствам гемостаза, фибринолиза, активации каликреинкининовой системы, системы комплемента, нарушению васкуляризации, оксигенации и трофики тканей, потенцированию специфических цитопатогенных эффектов воздействия бактериальных токсинов. Антиоксиданты блокируют активацию протоонкогенов, нормализуют иммунный статус [16,40].

Ослабление антиоксидантной защиты клеток может быть вызвано недостаточным поступлением в организм неферментных антиоксидантов, в частности, a-токоферола. Недостаточное поступление в организм селена может быть одной из причин нарушения активности селензависимой глутатионпероксидазы, дефицит Cu2+ и Zn2+ резко снижают активность СОД и резко повышают чувствительность к оксидантному повреждению.

Следует отметить, что изменения активности антиоксидантных ферментов зависят от интенсивности образования активных форм кислорода (АФК): в случае умеренного возрастания АФК возникает, как правило, активация ферментного звена антиоксидантной системы, при чрезмерном возрастании уровня свободных радикалов нередко происходит, подавление ферментативного звена радикальной защиты клеток [16,21].

Как известно, в условиях окислительного стресса, развивающегося при гипоксии, ишемии, гипероксии, действии стрессовых раздражителей бактериальной природы - эндо-, экзотоксинов, ферментов и токсинов бактерий, ферментативная защита оказывает менее эффективное по сравнению с протекторным действием низкомолекулярных антиоксидантов [14,41].

Последнее обусловлено быстрой инактивацией конститутивного пула ферментов антиоксидантной системы свободными радикалами и значительным временем, необходимым для индукции их синтеза. В связи с этим повышается значимость низкомолекулярных антиоксидантов, что обусловлено их избыточным содержанием в клетках и биологических жидкостях, а также достаточно высокой миграционной способностью.

Однако при чрезмерном образовании инициаторов свободнорадикального окисления может истощиться пул и неферментных антиоксидантов, которые, выполнив роль ловушки свободных радикалов, превращаются в неактивные димерные и другие формы.

СПИСОК ЛИТЕРАТУРЫ

  1. Биленко М.В. Ишемические и реперфузионные повреждения органов. М.: Медицина, 1989.- 368 с.
  2. Богач П.Г., Курский М.Д., Кучеренко Н.Е., Рыбальченко В.К. Структура и функции биологических мембран. - К., Вища школа, 1981. - 336 с.
  3. Владимиров Ю.А., Арчаков А.И. Перекисное окисление липидов в биологических мембранах. М.: Наука, 1972.
  4. Владимиров Ю.А. Свободные радикалы в биологических системах // Соросовский Образовательный Журнал. 2000. Т 6, №12. - С. 13-19.
  5. Владимиров Ю.А., Оленев И.И. Суслова Т.Б. Потапенко А.Я. Механизмы перекисного окисления липидов и его действие на биологические мембраны. - Биофизика. - Итоги науки и техники (ВИНИТИ) АН СССР. - М. - 1975. - Том 5. - С. 56-117.
  6. Гаспарян С.А., Владимиров Ю.А., Шаров А.П. и соавт.// Вопросы экспериментальной и клинической хирургии печени и поджелудочной железы. М.: Медицина, 1970. - с. 222.
  7. Герасимов А.М., Корнева Е.Н., Амелина Д.Ш. Моделирование взаимосвязи перекись - генерирующих и НАДФН - зависимых процессов. В сб.: Окислительные ферменты животной клетки и регуляция их активности. Тез. Всер. симп. Горький. - 1978. - с. 23-24.
  8. Герасимов А.М., Гусев В.А., Брусков О.С. Влияние экзогенной супероксиддисмутазы и 1,4 - диазобицикло-(2,2,2) - октана на устойчивость мышей к острой кислородной интоксикации. - Бюлл. экспер. биол. мед. - 1977. - Том 83. - №2. - с. 147-150.
  9. Гершенович З. С., Кричевская А.А. Лукаш А.И. // Мочевина в живых организмах / Ред. Бронивицкая З. Г. Ростов н/Д: Изд-во Ростов. гос. ун-та, 1970. - 84с.
  10. Гуляева Л.Ф. Ферменты биотрaнcформации ксенобиотиков в химическом канцерогенезе / Л.Ф. Гуляева, В.А. Вавилин, В.В. Ляхович. - Новосибирск, 2000. - 84 с.
  11. Делянин Н.В., Герасимов А.М. Механизмы антиоксидантной защиты организма при изменении режима кислородного обеспечения. // Материалы международной научной конференции. Гродно. - 1993. - с.18-19.
  12. Дмитриев Л.Ф., Иванова М.В., Давлетшина Л.Н. //Биохимия. - 1993. - Т. 58, N 2. - C. 255-260.
  13. Дубинина Е.Е., Шугалей И.В. //Успехи соврем. биологии. - 1993. - Т. 113, вып.1. - С. 71-81.
  14. Зенков Н.К. Окислительный стресс. Биохимические и патофизиологические аспекты / Н.К. Зенков, В.З. Лапкин, Е.Б. Меньщикова. - М.: Наука / Интерпериодика, 2001. - 343с.
  15. Игнарро Л.Дж. // актуальные проблемы анестезиологии и реаниматологии / под ред. Э.В.Недашковского - Архангельск-Тромсе, 1997. - С. 266-269.
  16. Казимирко В.К., Мальцев В.И. Антиоксидантная система и ее функционирование в организме человека. Медицинская Газета «Здоровье Укранины», выпуск № 192 «Новости медицины».
  17. Капелько В.И., Рууге Э.К. Исследования действия Кудесана при повреждении сердечной мышцы, вызванной стрессом. Применение антиоксидантного препарата кудесан (коэнзим Q10 c витамином Е) в кардиологии. М. - 2002. - с. 15-22.
  18. Коган А.Х., Кудрин А.Н., Кактурский Л.В. и др. Свободнорадикальные перикисные механизмы патогенеза ишемии и ИМ и их фармакологическая регуляция. Патофизиология, 1992, №2, 5-15.
  19. Колесниченко Л.С., Кулинский В.И. // Успехи соврем. Биологии 1989. - Т. 107. - №2. - с. 179.
  20. Коровина Н.А., Рууге Э.К. Использование коэнзима Q10 в профилактике и лечении. Применение антиоксидантного препарата кудесан (коэнзим Q10 с витамином Е) в кардиологии. М. - 2002. - с. 3-7.
  21. Кения М.В., Лукши А.И., Гуськов Е.П. Роль низкомолекулярных антиоксидантов при окислительном стрессе //Успехи соврем. биол. - 1993. -Т. 113. - вып. 4. - С. 456-469.
  22. Ленинджер А. Биохимия. Молекулярные основы структуры и функции клетки. М.: «Мир», 1999. - с.390-422.
  23. Логинов А. С, Матюшин Б. Н. Цитотоксическое действие активных форм кисло­рода и механизмы развития хронического процесса в печени при ее патологии //Пат. физиол. и экспер. терапия. - 1996. - N 4. - С. 3-6.
  24. Лукьянова Л.Д., Балмуханов Б.С., Уголев А.Т. Кислородзависимые процессы в клетке и ее функциональное состояние. - М.: Наука, 1982. - С. 298.
  25. Ляхович В.В., Вавилин В.А., Зенков Н.К., Меньщикова Е.Б. Активированные кислородные метаболиты в монооксидазных реакциях. Бюллетень СО РАМН, №4 (118), 2005. - с.7-12.
  26. Максименко А.В. Модифицированные препараты супероксиддисмутазы и каталазы для защиты сердечно-сосудистой системы и легких //Успехи соврем. биол. - 1993. - Т. 113, вып. 3. - С. 351-363.
  27. Малышев И.Ю., Манухина Е.Б. //Биохимия. - 1998. - Т. 63.,вып. 7. - С. 992-1006.
  28. Маянский А.Н., Маянский Д.Н. Очерки о нейтрофиле и макрофаге. - Новосибирск: Наука, 1981. -168с.
  29. Маянский Д.Н., Цырендоржиев Д.Д. Активация макрофагов. // Успехи современной биологии. - 1990. - Т. 109. - Вып. 3 - с. 352-369.
  30. Меньщикова Е.В., Зенков Н.Н. Антиоксиданты и ингибиторы радикальных оки­слительных процессов //Успехи современ. биологии. - 1993.-Т. 113,вып. 4. - С. 442-453.
  31. Поберезкина Н.Б., Осинская Л.Ф. //Украинский биохим. журнал. - 1989.- Т. 61, N 2. - C. 14-23.
  32. Скулачев В.П. Кислород в живой клетке: Добро и зло // Соросовский Образовательный Журнал, 1996.№3 - с. 4-16.
  33. Скулачев В.П. Альтернативные функции клеточного дыхания // Соросовский Образовательный Журнал, 1998. №8. - с. 2-7.
  34. Скулачев В.П. Эволюция, митохондрии и кислород // Соросовский Образовательный Журнал, 1999. №9. - с. 1-7.
  35. Скулачев В.П. Явления запрограммированной cмepти. Митохондрии, клетки и органы: роль активных форм кислорода. // Соросовский Образовательный Журнал, том 7, №6, 2001. - с. 4-10.
  36. Смирнов А.В., Криворучка Б.И. Антигипоксанты в неотложной медицине. Анест. и реаниматол., 1998, №2, с. 50-57.
  37. Сперанский С.Д., Неделькин А.Л., Сперанская Е.Ч., Зятьков И.П. //Тез. III Всесоюзного совещ. по хемилюминесценции. Рига. - 1990. - с.52.
  38. Трубников Г.А., Журавлев Ю.И. Антиоксиданты в комплексной терапии больных хроническим бронхитом.// Рос. мед. ж. - 1998. - №2. - С.38-41.
  39. Уклистая Е.А., Трубников Г.А., Панов А.А., Журавлев Ю.И. Антиоксиданты и антигипоксанты в комплексном лечении больных хроническим бронхитом. // Южно-российский журнал -1998. - №4. - с.94-98.
  40. Цебржинский О.И. // Физиология и патология перекисного окисления липидов, гемостаза и иммуногенеза - Полтава, 1992. - С. 120-142.
  41. Чеснокова Н.П., Афанасьева Г.А., Понукалина Е.В., Киричук В.Ф. Липопероксидация и антиоксидантная система крови в динамике чумной и холерной интоксикации. Патологическая физиология и экспериментальная терапия. - 2001. - №3.- с. 17-18.
  42. Cytochrom P-450-mediated differential oxidative modification of proteins: albumin, apolipoprotein E, and CYP2E1 as targets/ D.W. Choi, B. Leninger-Muller, M. Wellman et al. // J. Toxicol. Environ. Health A. - 2004. - Vol. 67.-P. 2061-2071.
  43. Dansette P. M., Sassi A., Descamps C., Mansuy D. // Antioxidants in therapy and preventive medicine. N.Y.: Plenum press, 1990. - P. 209.
  44. Esterbauer H., Gebicki J., Puhl H., Jurgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL // Free Radic. Biol. Med. -1992. - 13. - P.341-390.
  45. Frei B., Gaziano J.M. Content of antioxidants, preformed lipid hydroperoxides and cholesterol as predictors of the susceptibility of human LDL to metal ion-dependent and independent oxidation // J. Lipid Res. - 1993. - 34. - Р. 2135-2145.
  46. Frei B. Natural antioxidants in human health and disease. Orlando, FL: Academic Press.- 1993.
  47. Krinsky N.L. Membrane antioxidants // Ann. NY. Acad. Sci. - 1988. - 551. - Р. 17-33.
  48. Munzel N.,Sayegh H.,Freeman B.A. et al. Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A newel mechanism underlying tolerance and cross-tolerance.// J. Clin. Invest. - 1995 - Vol.95, №1 - P.187-194.
  49. Regina Brigelius-Flohe, Frank J Kelly, Jukka T Salonen, Jiri Neuzil, Jean-Marc Zingg and Angelo Azzi . Витамин E: современные данные и будущие исследования / American Journal of Clinical Nutrition. - 2002. - Vol. 76. - No. 4. - Р. 703-716.
  50. Stocker R., Frei B. Endogenous antioxidant defences in human blood plasma. In: Sies H. ed. Oxidative stress: oxidants and antioxidants. London: Academic Press. - 1991. - P.213-243.
  51. Weiss S. // Acta phisiol. scand. 1986. - V. 126. Suppl. 548. - P. 9.


СЕЛЕКЦИЯ И ГЕНЕТИКА PINUS SYLVESTRIS L. В ОСТРОВНЫХ БОРАХ

СЕЛЕКЦИЯ И ГЕНЕТИКА PINUS SYLVESTRIS L. В ОСТРОВНЫХ БОРАХ Статья в формате PDF 111 KB...

04 12 2023 19:35:48

ГРАЖДАНСКО-ПРАВОВЫЕ МЕРЫ ЗА КОРРУПЦИОННЫЕ ДЕЙСТВИЯ

ГРАЖДАНСКО-ПРАВОВЫЕ МЕРЫ ЗА КОРРУПЦИОННЫЕ ДЕЙСТВИЯ Статья в формате PDF 251 KB...

03 12 2023 17:19:59

РАЦИОНАЛЬНАЯ ТЕХНОЛОГИЯ УБОРКИ ЛУКА

РАЦИОНАЛЬНАЯ ТЕХНОЛОГИЯ УБОРКИ ЛУКА Статья в формате PDF 95 KB...

27 11 2023 15:21:43

ОСОБЕННОСТИ ПОДГОТОВЛЕННОСТИ СПОРТСМЕНОК ДЛЯ ДАЛЬНЕЙШЕЙ СПЕЦИАЛИЗАЦИИ НА ОЛИМПИЙСКОЙ ДИСТАНЦИИ

ОСОБЕННОСТИ ПОДГОТОВЛЕННОСТИ СПОРТСМЕНОК ДЛЯ ДАЛЬНЕЙШЕЙ СПЕЦИАЛИЗАЦИИ НА ОЛИМПИЙСКОЙ ДИСТАНЦИИ В статье отражены результаты комплексного исследования подготовленности спортсменок, специализирующихся в беге на 300-400 м с барьерами. Дан анализ статистически достоверных различий по педагогическим, физиологическим и биометрическим показателям в ответственейший момент спортивной карьеры - момент перехода с «детской» дистанции (бега на 300 м с барьерами) на олимпийскую дисциплину (400 м с барьерами). Выявлены взаимосвязи между различными сторонами подготовленности: физической, функциональной и технической. Представленный материал можно использовать в виде модельных хаpaктеристик для дeвyшек в возрасте 15-16 лет и закономерностей становления спортивного мастерства при уточнении Учебной программы для детско-юношеских спортивных школ, специализированных детско-юношеских школ олимпийского резерва и школ высшего спортивного мастерства по разделу «Барьерный бег». ...

26 11 2023 20:25:52

МОРФОЛОГИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ ИММУНИТЕТА

МОРФОЛОГИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ ИММУНИТЕТА Статья в формате PDF 152 KB...

25 11 2023 23:46:45

ПРОГНОЗИРОВАНИЕ ЭКОНОМИЧЕСКИХ ПРОЦЕССОВ

ПРОГНОЗИРОВАНИЕ ЭКОНОМИЧЕСКИХ ПРОЦЕССОВ Статья в формате PDF 124 KB...

21 11 2023 17:53:57

ИНФОРМАЦИОННЫЙ ПОДХОД В УПРАВЛЕНИИ

ИНФОРМАЦИОННЫЙ ПОДХОД В УПРАВЛЕНИИ Статья в формате PDF 119 KB...

20 11 2023 17:17:56

ДИАГНОСТИЧЕСКИЕ И РЕАБИЛИТАЦИОННО-ПРОФИЛАКТИЧЕСКИЕ ТЕХНОЛОГИИ ОБЕСПЕЧЕНИЯ ЗДОРОВЬЯ СТУДЕНТОВВ ОБРАЗОВАТЕЛЬНОЙ СИСТЕМЕ ВУЗА

ДИАГНОСТИЧЕСКИЕ И РЕАБИЛИТАЦИОННО-ПРОФИЛАКТИЧЕСКИЕ ТЕХНОЛОГИИ ОБЕСПЕЧЕНИЯ ЗДОРОВЬЯ СТУДЕНТОВВ ОБРАЗОВАТЕЛЬНОЙ СИСТЕМЕ ВУЗА Проведено поэтапное исследование, которое включало в себя оценку индивидуальных резервов соматического здоровья (СЗ) и оценку функционального состояния вегетативной нервной системы на основе исследования вариабельности ритма сердца (ВРС). Уровень СЗ оценивался в баллах. В результате проведенного нами исследования было выявлено, что риск манифестации хронической сосудистой патологии достаточно высок в группе с низкими энергетическими резервами организма (уровнем здоровья «низким» и «ниже среднего»), а таковых у нас оказалось 54,5 % из всех обследованных студентов БелГУ. Следующим этапом исследования была проверка этой версии. При анализе вариабельности сердечного ритма учитывались: показатель общей мощности спектра нейрогумopaльной регуляции сердечного ритма (TP); показатель, отражающий реактивность парасимпатического отдела вегетативной нервной системы при проведении АОП; визуальная оценка степени кардио-респираторной синхронизации на основании данных спектрального анализа ВРС и пневмограммы. У обследуемых с низким уровнем соматического здоровья признаки вегетативной дисфункции различной степени выраженности наблюдались в 92,5 % случаев. В группе с низким уровнем СЗ реактивность парасимпатического отдела ВНС, отражающая адаптационные резервы организма, оказалась так же низкой. Таким образом, наша версия о взаимосвязи уровня соматического здоровья и частотой встречаемости вегетативной дисфункции полностью подтвердилась. Чем ниже уровень соматического здоровья, тем более вероятна манифестации хронической сосудистой патологии. При высоком уровне здоровья риск возникновения хронической соматической патологии минимален. ...

18 11 2023 8:16:50

ИССЛЕДОВАНИЕ ФУНКЦИИ РАСПРЕДЕЛЕНИЯ УРОВНЯ МИКРОУСКОРЕНИЙ ВО ВРЕМЕНИ

ИССЛЕДОВАНИЕ ФУНКЦИИ РАСПРЕДЕЛЕНИЯ УРОВНЯ МИКРОУСКОРЕНИЙ ВО ВРЕМЕНИ При моделировании микроускорений возникает вопрос о функции распределения этой величины. В работе исследуется статистическая функция распределения микроускорений внутри космического аппарата, имеющего большие упругие элементы, после выключения управляющих paкетных двигателей. ...

11 11 2023 10:15:17

ПЕРЕТРУХИНА АЛЕФТИНА ТРОФИМОВНА

ПЕРЕТРУХИНА АЛЕФТИНА ТРОФИМОВНА Статья в формате PDF 294 KB...

10 11 2023 14:20:39

ОЦЕНКА КАЧЕСТВА ПЕДАГОГИЧЕСКИХ ТЕХНОЛОГИЙ В СИСТЕМЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ

ОЦЕНКА КАЧЕСТВА ПЕДАГОГИЧЕСКИХ ТЕХНОЛОГИЙ В СИСТЕМЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ Главным критерием оценки качества применяемых педагогических технологий, в том числе и при дистанционной форме обучения, становится не сама по себе сумма полученных знаний, а умение человека применить эти знания для решения конкретных жизненных или профессиональных задач. Однако на сегодняшний день в полной мере выявить достижение этой цели не представляется возможным. При этом одна из задач состоит в оценке качества педагогических технологий. ...

09 11 2023 16:12:41

НОВЫЙ СПОСОБ ОПЕРАТИВНОГО ЛЕЧЕНИЯ ПАХОВЫХ ГРЫЖ

НОВЫЙ СПОСОБ ОПЕРАТИВНОГО ЛЕЧЕНИЯ ПАХОВЫХ ГРЫЖ Статья в формате PDF 114 KB...

06 11 2023 14:25:40

ИММУНОЛОГИЧЕСКИЕ ПРОБЛЕМЫ СТАРЕНИЯ

ИММУНОЛОГИЧЕСКИЕ ПРОБЛЕМЫ СТАРЕНИЯ Статья в формате PDF 94 KB...

03 11 2023 4:37:16

НАРКОМАНИЯ И ВИЧ-ИНФЕКЦИЯ

НАРКОМАНИЯ И ВИЧ-ИНФЕКЦИЯ Статья в формате PDF 264 KB...

01 11 2023 3:16:23

СТАНДАРТИЗАЦИЯ НА ЗАЩИТЕ ОКРУЖАЮЩЕЙ СРЕДЫ

СТАНДАРТИЗАЦИЯ НА ЗАЩИТЕ ОКРУЖАЮЩЕЙ СРЕДЫ Статья в формате PDF 94 KB...

30 10 2023 21:47:52

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::