ПОВЫШЕНИЕ НАДЕЖНОСТИ ФУНКЦИОНИРОВАНИЯ СПЕЦПРОЦЕССОРОВ АДАПТИВНЫХ СРЕДСТВ ЗАЩИТЫ НА ОСНОВЕ ПРИМЕНЕНИЯ ПОЛИНОМИАЛЬНОЙ СИСТЕМЫ КЛАССОВ ВЫЧЕТОВ > Полезные советы
Тысяча полезных мелочей    

ПОВЫШЕНИЕ НАДЕЖНОСТИ ФУНКЦИОНИРОВАНИЯ СПЕЦПРОЦЕССОРОВ АДАПТИВНЫХ СРЕДСТВ ЗАЩИТЫ НА ОСНОВЕ ПРИМЕНЕНИЯ ПОЛИНОМИАЛЬНОЙ СИСТЕМЫ КЛАССОВ ВЫЧЕТОВ

ПОВЫШЕНИЕ НАДЕЖНОСТИ ФУНКЦИОНИРОВАНИЯ СПЕЦПРОЦЕССОРОВ АДАПТИВНЫХ СРЕДСТВ ЗАЩИТЫ НА ОСНОВЕ ПРИМЕНЕНИЯ ПОЛИНОМИАЛЬНОЙ СИСТЕМЫ КЛАССОВ ВЫЧЕТОВ

Калмыков И.А. Лободин М.В. Резеньков Д.Н. Петлеванный С.В. Статья в формате PDF 121 KB

Проблема исследований: Применение адаптивных средств защиты информации (АСЗИ) позволит повысить эффективность защиты информации от НСД. В то же самое время обеспечение надежности функционирования спецпроцессоров (СП) АСЗИ является одной в ряду наиболее важных задач.

Решение проблемы:

При хранении, передаче и обмене электронной информацией в сетях и системах возникают проблемы обеспечения ее конфиденциальности и целостности. Решить данную задачу можно за счет применения адаптивных средств защиты информации. Применение алгебраических систем, определяемых в расширенных полях Галуа, является одним из наиболее перспективных направлений в построении АСЗИ. В таких системах основными криптографическими преобразованиями являются сложение, умножение и возведение элементов по модулю порождающего полинома g(z). Применение полиномиальной системы классов вычетов (ПСКВ) позволяет повысить не только скорость проведения криптографических преобразований, но и обеспечить высокую надежность работы СП АСЗИ.

Согласно [1-3] в данной алгебраической системе полином A(z), удовлетворяющий условию  где , представляется в виде вектора

,             (1)

где ,  - минимальные многочлeны расширенного поля , .

Тогда операции сложения, вычитания и умножения можно свести к операциям, проводимым над соответствующими остатками, что повышает быстродействие. Кроме того операции проводятся над малоразрядными операндами, что позволяет сократить аппаратурные затраты.

Однако применение ПСКВ позволяет не только повысить скорость обработки данных, но и обеспечить высокую надежность работы СП [1-3]. Если на диапазон возможного изменения кодируемого множества полиномов наложить ограничения, то есть выбрать k из n оснований ПСКВ (k ), то это определит рабочий диапазон

,                  (2)

Многочлeн X(z) будет считаться разрешенным, если он принадлежит рабочему диапазону . Если полином не принадлежит этому диапазону, то он содержит ошибки.

Для  коррекции ошибок в немодулярных кодах широко используются позиционные хаpaктеристики [3]. Среди множества алгоритмов определения позиционной хаpaктеристики непозиционного кода  полиномиальной системы класса вычетов особое место принадлежит алгоритму обнаружения ошибки, базирующемуся на процедуре расширения оснований ПСКВ.

,                 (3)

где Bi(z) - ортогональный базис по i-ому основанию; i=1,...,k.

Для расширенной системы оснований  справедливо

,                        (4)

где  - ортогональный базис в расширенно системе оснований;  - ранг,  - рабочий диапазон.

Если положить условие, что , то

.                               (5)

Тогда, подставив в равенство (4) выражение (5) получаем

,              (6)

где S - номер интервала.

Исходя из условия взаимной простоты оснований имеем

          (7)

Так как , то выражение (4) можно представить

  .  (8)

Положив, что , получаем

.    (9)

Если S=0, то значение . В противном случае

,                 (10)

где .

Тогда

 .                (11)

Затем значение остатка по контрольному основанию, вычисленное согласно (11),  сравниванию с остатком, полученным в процессе работы СП АСЗИ. Если данные значения совпадают, то это свидетельствует о том, что исходная комбинация ПСКВ не содержит ошибки. В противном случае - комбинация ПСКВ содержит ошибку, вызванную отказом оборудования СП.

Применение алгоритма расширения оснований позволяет исправлять однократные ошибки, возникающие в результате отказов работы спецпроцессора криптографических преобразований.

СПИСОК ЛИТЕРАТУРЫ:

  1. Калмыков И.А. Математические модели нейросетевых отказоустойчивых вычислительных средств, функционирующих в полиномиальной системе классов вычетов/ Под ред. Н.И. Червякова. - М.: ФИЗМАТЛИТ, 2005. - 276 с.
  2. Калмыков И.А., Червяков Н.И., Щелкунова Ю.О., Бережной В.В. Математическая модель нейронных сетей для исследования ортогональных преобразований в расширенных полях Галуа/Нейрокомпьютеры: разработка, применение. №6, 2003. с.61-68с.
  3. Элементы применения компьютерной математики и нейроинформатики /Н.И. Червяков, И.А. Калмыков И.А., В.А. Галкина, Ю.О. Щелкунова, А.А. Шилов; Под ред. Н.И. Червякова. - М.: ФИЗМАТЛИТ, 2003. - 216 с.


ХРОНОФЕНОМЕНОЛОГИЯ АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИИ

ХРОНОФЕНОМЕНОЛОГИЯ АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИИ Статья в формате PDF 181 KB...

09 08 2022 6:16:46

ОНОПРИЕВ ВЛАДИМИР ИВАНОВИЧ

ОНОПРИЕВ ВЛАДИМИР ИВАНОВИЧ Статья в формате PDF 112 KB...

07 08 2022 12:32:24

РЕГУЛЯТОРНЫЕ ПЕПТИДЫ ИЗ ВНУТРЕННИХ ОРГАНОВ ЖИВОТНЫХ ПОСЛЕ ОСТРОЙ КРОВОПОТЕРИ

РЕГУЛЯТОРНЫЕ ПЕПТИДЫ ИЗ ВНУТРЕННИХ ОРГАНОВ ЖИВОТНЫХ ПОСЛЕ ОСТРОЙ КРОВОПОТЕРИ Цитомедины – это биологически активные соединения, продуцируемые органами и тканями, способные влиять на течение физиологических и биохимических процессов в организме для поддержания гомеостаза. Экспериментально выявлено, что пептиды (цитомедины), выделенные из тканей печени и сердца животных, влияют на адгезивные свойства клеток крови – увеличивают количество лейкоцитарно-эритроцитарных (ЛЭА), тромбоцитарнo-эритроцитарных (ТЭА) и лимфоцитарно-тромбоцитарных (ЛТА) агрегатов. Феномен лимфоцитарно-тромбоцитарной адгезии является ярким примером тесной взаимосвязи иммунитета и гемостаза, являющихся составными частями единой интегральной клеточно­-гумopaльной системы защиты организма. ...

06 08 2022 20:37:18

МЕТОДЫ УСКОРЕННОГО ОСВОЕНИЯ ТЕХНИЧЕСКИХ ДИСЦИПЛИН

МЕТОДЫ УСКОРЕННОГО ОСВОЕНИЯ ТЕХНИЧЕСКИХ ДИСЦИПЛИН Статья в формате PDF 750 KB...

27 07 2022 16:44:48

NEW METHOD FOR TREATMENT OF MULTIPLE-DESTRUCTIVE PULMONARY TUBERCULOSIS.

NEW METHOD FOR TREATMENT OF MULTIPLE-DESTRUCTIVE PULMONARY TUBERCULOSIS. Статья в формате PDF 122 KB...

24 07 2022 0:31:14

ФИЛОСОФИЯ КУЛЬТУРЫ ОСВАЛЬДА ШПЕНГЛЕРА

ФИЛОСОФИЯ КУЛЬТУРЫ ОСВАЛЬДА ШПЕНГЛЕРА Статья в формате PDF 103 KB...

20 07 2022 21:10:33

О ПРИРОДНЫХ ЗАКОНОМЕРНОСТЯХ РАЗМЕЩЕНИЯ ТОРФЯНЫХ РЕСУРСОВ В СОСТАВЕ ПРИРОДНО-ТЕРРИТОРИАЛЬНЫХ КОМПЛЕКСОВ

О ПРИРОДНЫХ ЗАКОНОМЕРНОСТЯХ РАЗМЕЩЕНИЯ ТОРФЯНЫХ РЕСУРСОВ В СОСТАВЕ ПРИРОДНО-ТЕРРИТОРИАЛЬНЫХ КОМПЛЕКСОВ Предложен ландшафтный метод районирования торфяных месторождений. Проведен геосистемный анализ и дана хаpaктеристика торфяных ресурсов. ...

13 07 2022 22:33:31

МАТУСЕВИЧ ВЛАДИМИР МИХАЙЛОВИЧ

МАТУСЕВИЧ ВЛАДИМИР МИХАЙЛОВИЧ Статья в формате PDF 215 KB...

08 07 2022 19:27:53

ОБ АКТУАЛЬНОСТИ НАУЧНОГО ИССЛЕДОВАНИЯ СОЦИАЛЬНОЙ ИНФРАСТРУКТУРЫ

ОБ АКТУАЛЬНОСТИ НАУЧНОГО ИССЛЕДОВАНИЯ СОЦИАЛЬНОЙ ИНФРАСТРУКТУРЫ В статье отмечается возрастающее значение научных исследований социальной инфраструктуры. Рассматриваются различные подходы к определению этого понятия, а также роль социальной инфраструктуры в формировании уровня жизни человека и развитии человеческого потенциала. ...

06 07 2022 11:16:21

«НОВАЯ ЭКОНОМИКА» НА РУБЕЖЕ СТОЛЕТИЙ: МИРОВОЙ КРИЗИС ВЫСОКИХ ТЕХНОЛОГИЙ ИЛИ ВЫСШАЯ СТУПЕНЬ РАЗВИТИЯ ЦИВИЛИЗАЦИИ?

«НОВАЯ ЭКОНОМИКА» НА РУБЕЖЕ СТОЛЕТИЙ: МИРОВОЙ КРИЗИС ВЫСОКИХ ТЕХНОЛОГИЙ ИЛИ ВЫСШАЯ СТУПЕНЬ РАЗВИТИЯ ЦИВИЛИЗАЦИИ? Приводятся основные показатели развития «информационного общества» в конце 20 века. Охаpaктеризованы взаимосвязи наукоемких производственных технологий и информатики, экономики и математики, экономико-математического моделирования управленческих решений. ...

05 07 2022 21:42:11

ТРАДИЦИОННОЕ ИСКУССТВО ЛОСКУТНОГО ШИТЬЯ. ПЭЧВОРК

ТРАДИЦИОННОЕ ИСКУССТВО ЛОСКУТНОГО ШИТЬЯ. ПЭЧВОРК Статья в формате PDF 251 KB...

03 07 2022 8:36:45

ОЦЕНКА ВЛИЯНИЯ НЕБЛАГОПРИЯТНОЙ ЭКОЛОГО-ГИГИЕНИЧЕСКОЙ ОБСТАНОВКИ ЮЖНО-КАЗАХСТАНСКОЙ ОБЛАСТИ НА ЗАБОЛЕВАЕМОСТЬ МИГРАНТОВ-РЕПАТРИАНТОВ

ОЦЕНКА ВЛИЯНИЯ НЕБЛАГОПРИЯТНОЙ ЭКОЛОГО-ГИГИЕНИЧЕСКОЙ ОБСТАНОВКИ ЮЖНО-КАЗАХСТАНСКОЙ ОБЛАСТИ НА ЗАБОЛЕВАЕМОСТЬ МИГРАНТОВ-РЕПАТРИАНТОВ На здоровье населения особое влияние оказывают экологические, гигиенические, социально-медицинские причины. В работе была реализована специально созданные социологические карты. Результаты социологического исследования показали, что к причинам, сильно влияющим на здоровье мигрантов-репатриантов относятся экологически нeблагоприятные условия окружающей среды. Заболеваемость мигрантов-репатриантов, проживающих в высокой степени опасности экологически наблагоприятных районах достигает от 2227,9 до 3010,9 ‰. Этот показатель указывает на значительное повышение показателей мигрантов, проживающих районах, где экологическая обстановка средняя, низкая и неопасная .Между загрязнением атмосферного воздуха и почвы и патологиями иммунной системы, минерализацией воды и заболеваниями мочепoлoвoй системы, загрязнением атмосферного воздуха и патологиями дыхательных путей есть прямая и в высокой степени связь. ...

25 06 2022 14:52:36

КЛИНИКО-АНАТОМИЧЕСКОЕ ОБОСНОВАНИЕ ЛЕЧЕБНОЙ ТАКТИКИ ПРИ ВЫВИХАХ АКРОМИАЛЬНОГО КОНЦА КЛЮЧИЦЫ

КЛИНИКО-АНАТОМИЧЕСКОЕ ОБОСНОВАНИЕ ЛЕЧЕБНОЙ ТАКТИКИ ПРИ ВЫВИХАХ АКРОМИАЛЬНОГО КОНЦА КЛЮЧИЦЫ Изучена анатомическая изменчивость строения акромиально-ключичного сустава и прочность его связок. Разработан собственный способ лечения больных с вывихом акромиального конца ключицы. Приведены показания для консервативного и хирургического лечения вывихов ключицы. ...

23 06 2022 15:37:22

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::