ПОВЫШЕНИЕ НАДЕЖНОСТИ ФУНКЦИОНИРОВАНИЯ СПЕЦПРОЦЕССОРОВ АДАПТИВНЫХ СРЕДСТВ ЗАЩИТЫ НА ОСНОВЕ ПРИМЕНЕНИЯ ПОЛИНОМИАЛЬНОЙ СИСТЕМЫ КЛАССОВ ВЫЧЕТОВ > Полезные советы
Тысяча полезных мелочей    

ПОВЫШЕНИЕ НАДЕЖНОСТИ ФУНКЦИОНИРОВАНИЯ СПЕЦПРОЦЕССОРОВ АДАПТИВНЫХ СРЕДСТВ ЗАЩИТЫ НА ОСНОВЕ ПРИМЕНЕНИЯ ПОЛИНОМИАЛЬНОЙ СИСТЕМЫ КЛАССОВ ВЫЧЕТОВ

ПОВЫШЕНИЕ НАДЕЖНОСТИ ФУНКЦИОНИРОВАНИЯ СПЕЦПРОЦЕССОРОВ АДАПТИВНЫХ СРЕДСТВ ЗАЩИТЫ НА ОСНОВЕ ПРИМЕНЕНИЯ ПОЛИНОМИАЛЬНОЙ СИСТЕМЫ КЛАССОВ ВЫЧЕТОВ

Калмыков И.А. Лободин М.В. Резеньков Д.Н. Петлеванный С.В. Статья в формате PDF 121 KB

Проблема исследований: Применение адаптивных средств защиты информации (АСЗИ) позволит повысить эффективность защиты информации от НСД. В то же самое время обеспечение надежности функционирования спецпроцессоров (СП) АСЗИ является одной в ряду наиболее важных задач.

Решение проблемы:

При хранении, передаче и обмене электронной информацией в сетях и системах возникают проблемы обеспечения ее конфиденциальности и целостности. Решить данную задачу можно за счет применения адаптивных средств защиты информации. Применение алгебраических систем, определяемых в расширенных полях Галуа, является одним из наиболее перспективных направлений в построении АСЗИ. В таких системах основными криптографическими преобразованиями являются сложение, умножение и возведение элементов по модулю порождающего полинома g(z). Применение полиномиальной системы классов вычетов (ПСКВ) позволяет повысить не только скорость проведения криптографических преобразований, но и обеспечить высокую надежность работы СП АСЗИ.

Согласно [1-3] в данной алгебраической системе полином A(z), удовлетворяющий условию  где , представляется в виде вектора

,             (1)

где ,  - минимальные многочлeны расширенного поля , .

Тогда операции сложения, вычитания и умножения можно свести к операциям, проводимым над соответствующими остатками, что повышает быстродействие. Кроме того операции проводятся над малоразрядными операндами, что позволяет сократить аппаратурные затраты.

Однако применение ПСКВ позволяет не только повысить скорость обработки данных, но и обеспечить высокую надежность работы СП [1-3]. Если на диапазон возможного изменения кодируемого множества полиномов наложить ограничения, то есть выбрать k из n оснований ПСКВ (k ), то это определит рабочий диапазон

,                  (2)

Многочлeн X(z) будет считаться разрешенным, если он принадлежит рабочему диапазону . Если полином не принадлежит этому диапазону, то он содержит ошибки.

Для  коррекции ошибок в немодулярных кодах широко используются позиционные хаpaктеристики [3]. Среди множества алгоритмов определения позиционной хаpaктеристики непозиционного кода  полиномиальной системы класса вычетов особое место принадлежит алгоритму обнаружения ошибки, базирующемуся на процедуре расширения оснований ПСКВ.

,                 (3)

где Bi(z) - ортогональный базис по i-ому основанию; i=1,...,k.

Для расширенной системы оснований  справедливо

,                        (4)

где  - ортогональный базис в расширенно системе оснований;  - ранг,  - рабочий диапазон.

Если положить условие, что , то

.                               (5)

Тогда, подставив в равенство (4) выражение (5) получаем

,              (6)

где S - номер интервала.

Исходя из условия взаимной простоты оснований имеем

          (7)

Так как , то выражение (4) можно представить

  .  (8)

Положив, что , получаем

.    (9)

Если S=0, то значение . В противном случае

,                 (10)

где .

Тогда

 .                (11)

Затем значение остатка по контрольному основанию, вычисленное согласно (11),  сравниванию с остатком, полученным в процессе работы СП АСЗИ. Если данные значения совпадают, то это свидетельствует о том, что исходная комбинация ПСКВ не содержит ошибки. В противном случае - комбинация ПСКВ содержит ошибку, вызванную отказом оборудования СП.

Применение алгоритма расширения оснований позволяет исправлять однократные ошибки, возникающие в результате отказов работы спецпроцессора криптографических преобразований.

СПИСОК ЛИТЕРАТУРЫ:

  1. Калмыков И.А. Математические модели нейросетевых отказоустойчивых вычислительных средств, функционирующих в полиномиальной системе классов вычетов/ Под ред. Н.И. Червякова. - М.: ФИЗМАТЛИТ, 2005. - 276 с.
  2. Калмыков И.А., Червяков Н.И., Щелкунова Ю.О., Бережной В.В. Математическая модель нейронных сетей для исследования ортогональных преобразований в расширенных полях Галуа/Нейрокомпьютеры: разработка, применение. №6, 2003. с.61-68с.
  3. Элементы применения компьютерной математики и нейроинформатики /Н.И. Червяков, И.А. Калмыков И.А., В.А. Галкина, Ю.О. Щелкунова, А.А. Шилов; Под ред. Н.И. Червякова. - М.: ФИЗМАТЛИТ, 2003. - 216 с.


ПРОФИЛЬ ЭТО ИМИДЖ?

ПРОФИЛЬ ЭТО ИМИДЖ? Статья в формате PDF 302 KB...

12 06 2024 21:44:56

ЭКОЛОГИЧЕСКАЯ ЭКСПЕРТИЗА

ЭКОЛОГИЧЕСКАЯ ЭКСПЕРТИЗА Статья в формате PDF 92 KB...

08 06 2024 7:43:59

ИТЕРАЦИОННЫЙ МОДУЛЯРНЫЙ ДИЗАЙН ДВУМЕРНЫХ НАНОСТРУКТУР

ИТЕРАЦИОННЫЙ МОДУЛЯРНЫЙ ДИЗАЙН ДВУМЕРНЫХ НАНОСТРУКТУР В данной работе предложена эволюционная модель формирования двумерных структур. Определены алгоритмы формирования структур в априори структурированном двумерном прострaнcтве путем заполнения его в соответствии с определенными эволюционными правилами. ...

07 06 2024 15:54:34

СПОСОБ ИСПЫТАНИЯ ЗАГРЯЗНЕНИЯ РЕЧНОЙ ВОДЫ ПО ПОКАЗАТЕЛЮ ВРЕМЕНИ РОСТА КОРНЕЙ РАСТЕНИЯ

СПОСОБ ИСПЫТАНИЯ ЗАГРЯЗНЕНИЯ РЕЧНОЙ ВОДЫ ПО ПОКАЗАТЕЛЮ ВРЕМЕНИ РОСТА КОРНЕЙ РАСТЕНИЯ В статье рассмотрено техническое решение инженерной экологии, которое может быть использовано при мониторинге качества проб речной воды тестированием роста корней определенных видов тестовых растений. ...

06 06 2024 6:44:47

ИЗМЕРЕНИЕ ШИРИНЫ ГОДИЧНОГО СЛОЯ НА КЕРНЕ ДРЕВЕСИНЫ

ИЗМЕРЕНИЕ ШИРИНЫ ГОДИЧНОГО СЛОЯ НА КЕРНЕ ДРЕВЕСИНЫ С помощью геоинформационной системы были получены точные измеренные значения каждого годичного слоя на всем керне древесины сосны. Данные обработаны в математической среде и получена статистическая формула, которая состоит из 16 составляющих, что позволило дать ориентировочный долгосрочный прогноз. ...

04 06 2024 3:10:14

О ВЛИЯНИИ ГЕОМАГНИТНОГО ПОЛЯ (ГМП) НА БИОТУ

О ВЛИЯНИИ ГЕОМАГНИТНОГО ПОЛЯ (ГМП) НА БИОТУ Статья в формате PDF 85 KB...

30 05 2024 7:16:20

ИЛЬМУШКИН ГЕОРГИЙ МАКСИМОВИЧ

ИЛЬМУШКИН ГЕОРГИЙ МАКСИМОВИЧ Статья в формате PDF 293 KB...

27 05 2024 0:45:35

ЗЕЛЕНЫЕ ИНДИКАТОРЫ СОСТОЯНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ

ЗЕЛЕНЫЕ ИНДИКАТОРЫ СОСТОЯНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ Статья в формате PDF 302 KB...

26 05 2024 0:42:23

ЯКОВЛЕВ ВАДИМ ИВАНОВИЧ

ЯКОВЛЕВ ВАДИМ ИВАНОВИЧ Статья в формате PDF 114 KB...

25 05 2024 3:46:53

ЦЕНА ОПЦИОНА ПРИ УСЛОВИИ ДИСКРЕТНОСТИ ХЕДЖИРОВАНИЯ

ЦЕНА ОПЦИОНА ПРИ УСЛОВИИ ДИСКРЕТНОСТИ ХЕДЖИРОВАНИЯ В данной работе предложен принципиально новый подход нахождения справедливой цены опциона европейского типа при условии дискретности хеджирования на эффективном рынке базового актива. Развитый подход позволяет определить стоимость опциона для достаточно широкого класса распределений цены базового актива, не ограничиваясь гипотезой о том, что распределение цен базового актива подчиняется логнормальному закону. Анализ полученных результатов позволил утверждать, что существуют такие состояния рынка, при которых осуществить хеджирование не предоставляется возможным. Данный эффект не находится в противоречии с теорией Блэка-Шоулза, т.к. конфигурация областей «нехеджируемости» вырождается в пустое множество при достаточно большом количестве актов хеджирования и достаточно малом промежутке времени между актами хеджирования ...

17 05 2024 5:16:31

ПРОДОЛЖИТЕЛЬНОЕ ПРЕБЫВАНИЕ В УСЛОВИЯХ НЕВЕСОМОСТИ И ЕЕ ВЛИЯНИЕ НА МЕХАНИЧЕСКИЕ СВОЙСТВА ТРЕХГЛАВОЙ МЫШЦЫ ГОЛЕНИ У ЧЕЛОВЕКА: ЭЛЕКТРОМЕХАНИЧЕСКАЯ ЗАДЕРЖКА И МЫШЕЧНО-СУХОЖИЛЬНАЯ ЖЕСТКОСТЬ

ПРОДОЛЖИТЕЛЬНОЕ ПРЕБЫВАНИЕ В УСЛОВИЯХ НЕВЕСОМОСТИ И ЕЕ ВЛИЯНИЕ НА МЕХАНИЧЕСКИЕ СВОЙСТВА ТРЕХГЛАВОЙ МЫШЦЫ ГОЛЕНИ У ЧЕЛОВЕКА: ЭЛЕКТРОМЕХАНИЧЕСКАЯ ЗАДЕРЖКА И МЫШЕЧНО-СУХОЖИЛЬНАЯ ЖЕСТКОСТЬ Исследовали влияние продолжительного пребывания в условиях невесомости на механические свойства и электромеханическую задержку (ЭМЗ) трехглавой мышцы голени (ТМГ) у 7 космонавтов до полета и на 3-5 день после возвращения на Землю. Механические свойства ТМГ оценивали по показателям максимальной произвольной силы (МПС), максимальной силы (Ро; частота 150 имп/с), силы одиночного сокращения (Рос), времени одиночного сокращения (ВОС), времени полурасслабления (1/2 ПР), времени развития напряжения до уровня 25, 50, 75 и 90% от максимума. Рассчитывали силовой дефицит (Рд) и тетанический индекс (ТИ). ЭМЗ регистрировали во время произвольного и непроизвольного сокращения ТМГ. В ответ на световой сигнал космонавт выполнял произвольное подошвенное сгибание при условии «сократить как можно быстро и сильно». Определяли общее время реакции (ОВР), премоторное время (ПМВ) и моторное время (МТ) или иначе ЭМЗ. В ответ на супрамаксимальный одиночный электрический импульс, приложенный к n. tibialis, определяли латентный период между М-ответом и началом развития Рос. После полета Рос, МПС и Ро уменьшились на 14,8; 41,7 и 25.6%, соответственно. Величина Рд и ТИ увеличилась на 49,7 и 46,7%, соответственно. ВОС увеличилось на 7,7%, а время 1/2 ПР уменьшилось – на 20,6%. Время развития произвольного изометрического сокращения значительно увеличилось, тогда как электрически вызванное сокращение не обнаружило существенных различий. ЭМЗ произвольного сокращения увеличилась на 34,1%, а ПМВ и ОВР уменьшились на 19,0 и 14,1%, соответственно. ЭМЗ электрически вызванного сокращения существенно не изменилось. Таким образом, механические изменения предполагают, что невесомость изменяет не только периферические процессы, связанные с сокращениями, но изменяет также и центрально-нервную комaнду. ЭМЗ при вызванном одиночном сокращении простой и быстрый метод оценки изменения жесткости мышцы. Более того, ЭМЗ при вызванном одиночном сокращении мышцы может служить показателем функционального состояния нервно-мышечного аппарата, а соотношение ЭМЗ при произвольном и вызванном сокращениях показателем функционального состояния центральной нервной системы. ...

14 05 2024 2:37:43

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::