ФОРМУЛИРОВКА ЗАДАЧИ ОПРЕДЕЛЕНИЯ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ В ИНДУКТОРЕПРИ МАГНИТНО-ИМПУЛЬСНОЙ ШТАМПОВКЕ
Рассмотрим один из вариантов системы магнитно-импульсной штамповки (СМИШ) с одновитковым индуктором [1]. При замыкании конденсаторной батареи на индуктор на поверхности разреза индуктора подается импульсное напряжение, равномерно распределенное по поверхностям разреза индуктора и с известным законом изменения по времени. Протекающий по индуктору объемный ток индуцирует в заготовке переменное электромагнитное поле, приводящее к возникновению в объеме системы пондеромоторных сил. Их радиальная составляющая, возникающая в заготовке, приводит к ее обжатию.
При декомпозиции СМИШ можно выделить две подсистемы:
- электрическая подсистема, определяющая пондеромоторные силы;
- деформационная подсистема, определяющая деформации заготовки в процессе действия импульса и после его окончания.
Связь между подсистемами обеспечивается пондеромоторными силами и ускоренными движениями заготовки. В первом приближении вторая связь может считаться слабой и вследствие этого может быть оборвана. Это дает возможность вместо связной задачи электромагнитного поля и деформирования определить последовательность двух задач:
- определение пондеромоторных сил в СМИШ;
- определение деформаций заготовки при действии известных пондеромоторных сил на заготовку.
Рассмотрим математическую формулировку первой задачи. Примем, что прострaнcтвозадачи не содержит диэлектриков, тогда в области задачи, где будут существовать электрические токи, диэлектрическая постоянная e будет равна 1, и вектор напряженности электрического поля будет совпадать с вектором электрической индукции .
Будем считать, что прострaнcтво задачи не содержит ферромагнетиков. Это значит, что магнитная проницаемость m постоянна и близка к 1 (что хаpaктерно для обычных диа- и пара- магнитных тел), и, следовательно, вектор магнитной индукции B совпадает по направлению с вектором напряженности магнитного поля H. Таким образом, эффектами, обусловленными появлением вектора намагничения среды, будем пренебрегать в силу малости молекулярных токов по сравнению с токами проводимости.
Также примем, что в рассматриваемой области отсутствуют сторонние электрические заряды, т.е. их плотность ρэл = 0.
Как известно [1], объемная плотность пондеромоторных сил, в рамках сделанных предположений, определяется формулой:
F = j⋅H,
где F - вектор пондеромоторных сил; j - вектор объемного тока; H - напряженность магнитного поля.
Вектор плотности тока находим, используя закон Ома в дифференциальной форме:
j = λE.
Здесь λ - удельная электропроводность, E - напряженность электрического поля. Она определяется тремя составляющими:
Здесь φ - так называемый скалярный потенциал, A - векторный потенциал, v - скорость сплошной среды. Последнее слагаемое выражает слабую связь между электрической и деформационной подсистемами и в первом приближении может быть опущено.
Потенциалы j и A вводятся таким образом, чтобы удовлетворить уравнениям Максвелла:
Напряженность магнитного поля определяется через векторный потенциал:
H = rotA.
Отметим, что в низкочастотной постановке «инерционными» слагаемыми в (4) следует пренебречь. Тогда состояние электрической подсистемы описывается уравнениями относительно скалярного и векторного потенциалов:
(6)
Граничные условия для скалярного потенциала следующие:
- на поверхностях разреза индуктора:
(7)
- на поверхностях z = 0, z = h, r = r1н, r = r1в, r = r2н, r = r2в, z = 0:
n⋅∇φ = 0; (8)
здесь h - высота СМИШ, r = r1н, r = r1в - наружный и внутренний радиусы индуктора, r = r2н, r = r2в - то же для заготовки.
Очевидно, что формулировка уравнений относительно скалярного и векторного потенциалов также может быть подвергнута декомпозиции, так как первое уравнение относительно скалярного потенциала может быть решено отдельно как однородное гармоническое уравнение с неоднородными граничными условиями. Второе уравнение системы, представляющее уравнения теплопроводности, не имеет условий на границах, но будет неоднородным:
с однородными начальными условиями.
Список литературы
1. Математическое моделирование электромеханических процессов в индукторе для магнитно-импульсной обработки металлов / А.К. Талалаев, В.Д. Кухарь, А.А. Орлов и др. - Тула: Изд. ТулГУ, 2004. - 118 с.
Статья в формате PDF
112 KB...
24 03 2025 15:13:40
Статья в формате PDF
112 KB...
23 03 2025 18:26:26
Статья в формате PDF
119 KB...
22 03 2025 15:32:11
Статья в формате PDF
103 KB...
21 03 2025 5:28:46
19 03 2025 15:29:46
Статья в формате PDF
601 KB...
18 03 2025 8:17:46
Статья в формате PDF
106 KB...
17 03 2025 13:18:23
Статья в формате PDF
119 KB...
16 03 2025 15:38:12
Статья в формате PDF
114 KB...
15 03 2025 14:29:22
Статья в формате PDF
134 KB...
14 03 2025 11:22:38
Статья в формате PDF
111 KB...
13 03 2025 0:57:45
Статья в формате PDF
105 KB...
12 03 2025 13:35:29
Статья в формате PDF
124 KB...
11 03 2025 21:10:30
Статья в формате PDF
196 KB...
10 03 2025 15:49:36
Статья в формате PDF
130 KB...
09 03 2025 7:37:56
Статья в формате PDF 327 KB...
08 03 2025 17:26:26
Статья в формате PDF
108 KB...
07 03 2025 7:36:37
Статья в формате PDF
126 KB...
06 03 2025 7:24:30
05 03 2025 2:42:23
Статья в формате PDF
103 KB...
04 03 2025 7:44:12
В статье приводятся обобщенные данные о принципах лечения и современных подходах к дифференцированной терапии носовых кровотечений, отражена специфика коррекции геморрагического синдрома при кранио-фациальных травмах. Приводится критический анализ общепринятых положении о принципах лечения носовых геморрагий.
...
03 03 2025 13:17:13
02 03 2025 4:12:16
Статья в формате PDF
142 KB...
01 03 2025 15:25:43
Статья в формате PDF 120 KB...
27 02 2025 2:24:22
Статья в формате PDF
130 KB...
26 02 2025 4:28:36
Статья в формате PDF
111 KB...
25 02 2025 17:54:55
Статья в формате PDF
271 KB...
24 02 2025 21:16:57
Статья в формате PDF
573 KB...
23 02 2025 1:58:59
Статья в формате PDF
329 KB...
22 02 2025 0:56:32
Статья в формате PDF
307 KB...
21 02 2025 1:25:55
Статья в формате PDF
121 KB...
20 02 2025 1:39:43
Статья в формате PDF
245 KB...
19 02 2025 11:49:51
Статья в формате PDF
258 KB...
18 02 2025 0:14:43
Статья в формате PDF
106 KB...
17 02 2025 17:25:54
Исторический аспект развития студенческого самоуправления в дореволюционный, советский и переходный периоды России показали, что будущее страны на современном этапе определяется тем, каким образом будут осуществлены воспитание и подготовка квалифицированной рабочей силы, готовой к постоянному профессиональному росту, социальной и профессиональной мобильности. Одним из важных стимулов повышения гражданской, патриотической и социальной активности будущих специалистов являются восстановление, наличие и дальнейшее развитие и совершенствование таких демократических институтов в студенческой среде как соуправление и самоуправление.
...
16 02 2025 15:56:45
Статья в формате PDF
139 KB...
15 02 2025 15:27:24
Перспективами развития лесной отрасли России и состоянием лесных экосистем обеспокоены многие ведущие специалисты [1]. Анализ развития ситуации с лесами и лесным хозяйством в развитых государствах показывает, что без стратегического планирования (предвидения и контроля ситуации в отрасли на десятилетия вперед) невозможно достичь устойчивого развития. Поэтому прогноз развития лесной отрасли на основе анализа состояния лесов в Южном федеральном округе, в особенности в его горной части (в пределах Краснодарского края), где развиты уникальные и особо ценные леса юга России, сосредоточены важнейшие курорты России в непосредственно в пограничной зоне ее, приобретает особую геополитическую значимость и актуальность.
...
14 02 2025 21:30:48
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::