ФОРМУЛИРОВКА ЗАДАЧИ ОПРЕДЕЛЕНИЯ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ В ИНДУКТОРЕПРИ МАГНИТНО-ИМПУЛЬСНОЙ ШТАМПОВКЕ
Рассмотрим один из вариантов системы магнитно-импульсной штамповки (СМИШ) с одновитковым индуктором [1]. При замыкании конденсаторной батареи на индуктор на поверхности разреза индуктора подается импульсное напряжение, равномерно распределенное по поверхностям разреза индуктора и с известным законом изменения по времени. Протекающий по индуктору объемный ток индуцирует в заготовке переменное электромагнитное поле, приводящее к возникновению в объеме системы пондеромоторных сил. Их радиальная составляющая, возникающая в заготовке, приводит к ее обжатию.
При декомпозиции СМИШ можно выделить две подсистемы:
- электрическая подсистема, определяющая пондеромоторные силы;
- деформационная подсистема, определяющая деформации заготовки в процессе действия импульса и после его окончания.
Связь между подсистемами обеспечивается пондеромоторными силами и ускоренными движениями заготовки. В первом приближении вторая связь может считаться слабой и вследствие этого может быть оборвана. Это дает возможность вместо связной задачи электромагнитного поля и деформирования определить последовательность двух задач:
- определение пондеромоторных сил в СМИШ;
- определение деформаций заготовки при действии известных пондеромоторных сил на заготовку.
Рассмотрим математическую формулировку первой задачи. Примем, что прострaнcтвозадачи не содержит диэлектриков, тогда в области задачи, где будут существовать электрические токи, диэлектрическая постоянная e будет равна 1, и вектор напряженности электрического поля будет совпадать с вектором электрической индукции .
Будем считать, что прострaнcтво задачи не содержит ферромагнетиков. Это значит, что магнитная проницаемость m постоянна и близка к 1 (что хаpaктерно для обычных диа- и пара- магнитных тел), и, следовательно, вектор магнитной индукции B совпадает по направлению с вектором напряженности магнитного поля H. Таким образом, эффектами, обусловленными появлением вектора намагничения среды, будем пренебрегать в силу малости молекулярных токов по сравнению с токами проводимости.
Также примем, что в рассматриваемой области отсутствуют сторонние электрические заряды, т.е. их плотность ρэл = 0.
Как известно [1], объемная плотность пондеромоторных сил, в рамках сделанных предположений, определяется формулой:
F = j⋅H,
где F - вектор пондеромоторных сил; j - вектор объемного тока; H - напряженность магнитного поля.
Вектор плотности тока находим, используя закон Ома в дифференциальной форме:
j = λE.
Здесь λ - удельная электропроводность, E - напряженность электрического поля. Она определяется тремя составляющими:
Здесь φ - так называемый скалярный потенциал, A - векторный потенциал, v - скорость сплошной среды. Последнее слагаемое выражает слабую связь между электрической и деформационной подсистемами и в первом приближении может быть опущено.
Потенциалы j и A вводятся таким образом, чтобы удовлетворить уравнениям Максвелла:
Напряженность магнитного поля определяется через векторный потенциал:
H = rotA.
Отметим, что в низкочастотной постановке «инерционными» слагаемыми в (4) следует пренебречь. Тогда состояние электрической подсистемы описывается уравнениями относительно скалярного и векторного потенциалов:
(6)
Граничные условия для скалярного потенциала следующие:
- на поверхностях разреза индуктора:
(7)
- на поверхностях z = 0, z = h, r = r1н, r = r1в, r = r2н, r = r2в, z = 0:
n⋅∇φ = 0; (8)
здесь h - высота СМИШ, r = r1н, r = r1в - наружный и внутренний радиусы индуктора, r = r2н, r = r2в - то же для заготовки.
Очевидно, что формулировка уравнений относительно скалярного и векторного потенциалов также может быть подвергнута декомпозиции, так как первое уравнение относительно скалярного потенциала может быть решено отдельно как однородное гармоническое уравнение с неоднородными граничными условиями. Второе уравнение системы, представляющее уравнения теплопроводности, не имеет условий на границах, но будет неоднородным:
с однородными начальными условиями.
Список литературы
1. Математическое моделирование электромеханических процессов в индукторе для магнитно-импульсной обработки металлов / А.К. Талалаев, В.Д. Кухарь, А.А. Орлов и др. - Тула: Изд. ТулГУ, 2004. - 118 с.
Статья в формате PDF 155 KB...
10 12 2024 8:49:31
Статья в формате PDF 386 KB...
09 12 2024 16:20:39
Статья в формате PDF 146 KB...
08 12 2024 19:47:47
Статья в формате PDF 130 KB...
07 12 2024 10:56:55
Статья в формате PDF 100 KB...
05 12 2024 12:49:17
Статья в формате PDF 171 KB...
04 12 2024 18:58:42
Статья в формате PDF 416 KB...
03 12 2024 4:59:30
01 12 2024 1:30:21
Статья в формате PDF 119 KB...
29 11 2024 15:32:56
Статья в формате PDF 102 KB...
28 11 2024 19:35:22
Статья в формате PDF 102 KB...
27 11 2024 6:38:39
Показано, что бытующее до сих пор утверждение, что центростремительные и гироскопические силы работы не совершают, неверно. При движении тела с постоянной скоростью по круговой орбите непрерывно затрачивается работа на изменение направления движения (поворот вектора скорости). ...
26 11 2024 0:29:10
Статья в формате PDF 297 KB...
25 11 2024 9:38:32
Статья в формате PDF 244 KB...
24 11 2024 10:17:10
Статья в формате PDF 100 KB...
23 11 2024 3:16:42
Статья в формате PDF 141 KB...
22 11 2024 3:30:45
Статья в формате PDF 119 KB...
21 11 2024 1:37:47
Статья в формате PDF 100 KB...
20 11 2024 2:40:58
Статья в формате PDF 255 KB...
19 11 2024 22:19:36
Статья в формате PDF 108 KB...
18 11 2024 22:24:36
Статья в формате PDF 133 KB...
17 11 2024 4:21:50
Статья в формате PDF 195 KB...
16 11 2024 4:42:49
Статья в формате PDF 150 KB...
15 11 2024 20:44:40
Авторы, используя стереокраниобазиометр собственной конструкции, на 248 объектах установили, что точка пересечения верхнего края пирамиды височной кости корешком тройничного нерва занимает преимущественно заднее, латеральное и высокое положение при брахицефалии и брахибазилии, а при долихоцефалии и долихобазилии – переднее, медиальное и низкое положение. Большим абсолютным размерам черепа соответствует высокое, заднее и латеральное положение данной точки, а малым абсолютным размерам черепа – ее низкое, переднее и медиальное положение. Наибольшая степень корреляции имеет место с индексом треугольника с вершинами в передних точках наружных слуховых проходов и в глабелле. Полученные данные могут быть использованы при изучении закономерностей морфогенеза черепа человека, а также при планировании операций чрезкожной радикотомии. ...
14 11 2024 5:44:37
Статья в формате PDF 129 KB...
13 11 2024 7:20:13
Статья в формате PDF 260 KB...
11 11 2024 4:28:28
Статья в формате PDF 140 KB...
10 11 2024 21:10:49
Статья в формате PDF 129 KB...
09 11 2024 16:23:11
Статья в формате PDF 111 KB...
08 11 2024 17:27:35
Приведены результаты опыта искусственного разведения лиственницы, проведенного впервые в Центральной Якутии с целью ускорения лесообразовательного процесса в зеленой зоне с. Матта Мегино-Кангаласского района. Выявлен высокий процент приживаемости саженцев (98,3-83,5 %). Установлено, что в первые годы после посадки идет адаптация саженцев к новым условиям среды, начиная с 3-4 года после посадки дают хороший прирост в высоту. ...
07 11 2024 1:31:46
Изучена анатомическая изменчивость строения акромиально-ключичного сустава и прочность его связок. Разработан собственный способ лечения больных с вывихом акромиального конца ключицы. Приведены показания для консервативного и хирургического лечения вывихов ключицы. ...
06 11 2024 16:40:13
Статья в формате PDF 253 KB...
04 11 2024 20:11:24
Статья в формате PDF 119 KB...
03 11 2024 3:47:22
Статья в формате PDF 275 KB...
02 11 2024 0:30:40
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::