РАЗРАБОТКА АВТОМАТИЗИРОВАННОГО МЕТОДА ПРИБЛИЖЕНИЯ ФУНКЦИЙ С ИСПОЛЬЗОВАНИЕМ ПОЛИНОМА ЛАГРАНЖА ДЛЯ ОПИСАНИЯ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ТКАЧЕСТВА
Знание математической модели процесса позволяет прогнозировать условия изготовления, строение и свойства ткани, оценить степень влияния входных факторов.
Анализ литературы позволил установить, что для математического описания технологического процесса ткачества ранее использовались экспериментальные методы, заключающиеся в обработке экспериментальных данных, полученных в результате реализации математико-статистических методов планирования эксперимента.
Кроме этих методов существуют также методы приближения функций, которые не нашли широкого применения, поскольку требуют проведения значительного количества вычислений, то есть являются очень трудоемкими.
В настоящее время появилась современная вычислительная техника, позволяющая автоматизировать весь процесс исследования какого- либо процесса при наличии всех необходимых для этого средств исследования. Поэтому стало возможным использование методов приближения функций для математического описания технологических процессов.
Сущность методов приближения функций заключается в замене одной функции, которая чаще всего известна лишь эмпирически, другой функцией более простого вида. С этой целью можно применять различные интерполяционные полиномы, в частности, полином Лагранжа.
Для использования этого полинома при исследовании технологического процесса ткачества был составлен автоматизированный алгоритм, в соответствии с которым необходимо:
- На технологическом оборудовании, установленном в ткацком производстве или в лабораторных условиях, с помощью контрольно-измерительных приборов получить диаграмму или осциллограмму натяжения нитей. На диаграмме или осциллограмме выделить участок, после которого цикл натяжения нитей повторяется.
- Для получения дискретной информации об исследуемом процессе разбить диаграмму или осциллограмму натяжения нитей с выбранным постоянным шагом h изменения аргумента.
- На основе экспериментальных данных натяжения произвести вычисления коэффициентов полинома.
- Подставить коэффициенты в полином Лагранжа, общий вид которого:
Р(х) = В0 +В1(х -xо) + В2(х -xо)(х -x1)+ ... + Вп (х -xо)(х -x1)...(x -xп-1)
Для получения диаграммы натяжения нитей основы в лаборатории ткачества кафедры «Технология текстильного производства» Камышинского технологического института (филиал Волгоградского государственного технического университета) был проведен эксперимент на ткацком станке СТБ-2-216.
Полученная в результате эксперимента диаграмма обpaбатывалась в соответствии с вышеуказанным алгоритмом. В среде программирования Mathcad было получено несколько математических моделей с различным шагом интерполяции. Оценка эффективности полученных математических моделей производилась в табличном процессоре Excel путем расчета относительной средней квадратической ошибки для всех значений аргумента хi по формуле
,
где - относительная величина квадратической ошибки для каждого значения аргумента хi, , %;
N- количество экспериментальных значений натяжения основных нитей.
,
где - абсолютная средняя квадратическая ошибка для каждого значения аргумента хi;
,
где - экспериментальные значения натяжения основных нитей, сН
- теоретические значения натяжения основных нитей, вычисленные по математической модели, сН
В зависимости от выбранного шага модели имели следующие величины относительной средней квадратической ошибки для всех значений аргумента (см. табл.1).
Таблица 1. Показатели относительной средней квадратической ошибки в зависимости от шага интерполяции
Шаг интерполяции |
Величина относительной средней квадратической ошибки на интервале (0; 360 град.), % |
Величина относительной средней квадратической ошибки на интервале (80; 280 град.), % |
5 |
84,29 |
100,00 |
10 |
68,50 |
81,95 |
15 |
84,01 |
96,51 |
20 |
47,92 |
46,40 |
30 |
21,80 |
7,25 |
40 |
37,20 |
2,37 |
60 |
3,51 |
3,28 |
80 |
10,20 |
5,68 |
120 |
10,30 |
5,72 |
Из таблицы 1 видно, что на узком интервале (80; 280 град.) более эффективной математической моделью является та, которая построена с шагом h=40 град. Однако для исследования натяжения нитей на всем интервале эту модель использовать нецелесообразно вследствие большой величины относительной средней квадратической ошибки. В этом случае следует выбирать математическую модель с шагом h=60 град. И в том, и в другом случае величины относительной средней квадратической ошибки на интервале (80; 280 град.) не превышают допустимой нормы δ=5 %, следовательно, математические модели с шагом h=40 и h=60 град. могут быть использованы для прогнозирования изменения натяжения нитей в ткачестве для точек, близких к середине интервала.
Выводы:
- Проанализированы методы приближения функций, которые могут применяться для описания технологических процессов ткацкого производства.
- С использованием полинома Лагранжа получены математические модели натяжения нитей основы при исследовании процесса ткачества и проведена оценка их эффективности.
- Разработаны автоматизированный алгоритм по использованию метода приближения функций с применением интерполяционного полинома Лагранжа для прогнозирования изменения натяжения на ткацком станке и рекомендации по использованию полинома Лагранжа при анализе натяжения в технологическом процессе ткачества.
Статья в формате PDF 441 KB...
10 12 2024 4:23:51
Установлено, что предпосевное замачивание семян и опрыскивание вегетирующих растений хлопчатника (Gossipium hirsutum L.) растворами сочетаний фитогормонов кинетина (КН) и гибберелловой кислоты (ГК) и совместно с витаминами никотиновой кислотой (НК) и пантотеновой кислотой (ПК) эффективно стимулирует полевую всхожесть семян, рост стeбля и образование побегов, среднюю площадь листа и общую фотосинтетическую листовую поверхность, улучшение водного режима. Также отмечено увеличение числа коробочек, длины волокна и выхода волокна с растения от 34,6 до 60,4 %. Наиболее эффективно предпосевное замачивание семян сочетанием фитогормонов совместно с витаминами. ...
09 12 2024 16:10:29
Статья в формате PDF 273 KB...
07 12 2024 6:14:33
06 12 2024 12:20:14
В исследованиях приняло участие 85 спортсменов, которые были распределены 6 групп: юноши и взрослые лыжники, юноши и взрослые бегуны, юноши и взрослые спортсмены, занимающиеся скоростно-силовыми видами спорта. В качестве физической нагрузки применялась работа на велоэргометре ступенчато-повышающейся мощности без пауз отдыха от 50 до 200 Вт. При нагрузке мощностью 200 Вт во всех шести группах испытуемых выявлены значимые корреляционные связи между физической работоспособностью и частотой сердечных сокращений, отношением ударного объема крови к частоте сердечных сокращений. В группах спортсменов, занимающихся видами спорта на выносливость, и у юношей, тренирующих скоростно-силовые качества, выявлены также значимые корреляционные связи между физической работоспособностью и коэффициентом комплексной оценки обеспечения организма кислородом. ...
05 12 2024 14:37:25
Статья в формате PDF 172 KB...
04 12 2024 9:12:21
Статья в формате PDF 125 KB...
03 12 2024 13:46:32
Статья в формате PDF 106 KB...
02 12 2024 8:33:10
Статья в формате PDF 139 KB...
01 12 2024 14:26:15
Статья в формате PDF 114 KB...
30 11 2024 14:21:54
Статья в формате PDF 300 KB...
29 11 2024 8:26:11
Статья в формате PDF 131 KB...
28 11 2024 21:35:37
Статья в формате PDF 105 KB...
27 11 2024 20:26:31
Статья в формате PDF 317 KB...
26 11 2024 5:39:46
Статья в формате PDF 261 KB...
25 11 2024 6:40:47
Статья в формате PDF 107 KB...
24 11 2024 15:22:45
Статья в формате PDF 105 KB...
22 11 2024 4:53:59
21 11 2024 13:37:21
Статья в формате PDF 141 KB...
20 11 2024 8:31:40
18 11 2024 2:34:24
Статья в формате PDF 248 KB...
17 11 2024 8:20:22
Статья в формате PDF 119 KB...
16 11 2024 9:50:45
Статья в формате PDF 278 KB...
15 11 2024 7:40:42
Статья в формате PDF 113 KB...
14 11 2024 15:26:43
Статья в формате PDF 117 KB...
13 11 2024 1:26:16
Статья в формате PDF 314 KB...
12 11 2024 4:42:41
Статья в формате PDF 312 KB...
11 11 2024 5:51:55
10 11 2024 19:31:30
Статья в формате PDF 267 KB...
09 11 2024 8:13:57
В статье описана и исследована методами математической статистики хронологическая аномалия космонавтики. Обоснован биномиальный закон распределения числа хронологических совпадений. Показано, что вероятность случайного появления рассматриваемых совпадений весьма мала. Метод исследования, применяемый в работе, преимущественно основан на статистическом анализе хронологии при помощи параметризации дат событий и проверки соответствующего критериального свойства. Используются параметры: условные номера дней с начала летоисчисления N, с начала года n и год Г. Основными информативными параметрами являются интервалы времени между событиями.Обоснован биномиальный закон распределения числа хронологических совпадений. Показано, что вероятность случайного появления рассматриваемых совпадений весьма мала. ...
08 11 2024 22:57:49
Статья в формате PDF 125 KB...
07 11 2024 10:49:31
Статья в формате PDF 282 KB...
06 11 2024 8:55:38
Статья в формате PDF 107 KB...
05 11 2024 15:11:43
Настоящая работа посвящена экономико-математическому моделированию процесса кадрового обеспечения организации с учетом основных положений и методов индустриально-организационной психологии [1]. ...
04 11 2024 8:48:40
Статья в формате PDF 112 KB...
03 11 2024 0:29:48
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::