ПАРАЛЛЕЛЬНЫЕ ЯВНЫЕ ОДНОШАГОВЫЕ МЕТОДЫ ДЛЯ ЧИСЛЕННОГО РЕШЕНИЯ ЖЕСТКИХ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ > Полезные советы
Тысяча полезных мелочей    

ПАРАЛЛЕЛЬНЫЕ ЯВНЫЕ ОДНОШАГОВЫЕ МЕТОДЫ ДЛЯ ЧИСЛЕННОГО РЕШЕНИЯ ЖЕСТКИХ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

ПАРАЛЛЕЛЬНЫЕ ЯВНЫЕ ОДНОШАГОВЫЕ МЕТОДЫ ДЛЯ ЧИСЛЕННОГО РЕШЕНИЯ ЖЕСТКИХ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Ващенко Г.В. Статья в формате PDF 251 KB

Предложены параллельные явные одношаговые методы первого, второго порядков, обеспечивающие возможность с минимальными вычислительными затратами интегрировать жесткие системы обыкновенных дифференциальных уравнений. В предлагаемых параллельных алгоритмах изменение величины шага построены на основе контроля точности и устойчивости численной схемы, а в неравенстве для контроля точности применяется оценка локальной ошибки метода.

В настоящее время одним из основных параметром, хаpaктеризующих эффективность использования вычислительной техники в науке и технологии, являются математические модели и численные методы, применяемые при создании программ для реализации исследований и расчетов по этим моделям. Моделирование процессов во многие важных приложениях приводит к необходимости численного решения задачи Коши для умеренно жестких систем обыкновенных дифференциальных уравнений [2, 3].

Рассматривается задача Коши для автономной системы обыкновенных дифференциаль ных уравнений первого порядка

y′ = f(y), y(t0) = y0, t0 ≤ t ≤ tk (1)

где y: [t0, tk] →RN, f: [t0, tk]× RN →RN, [t0, tk] -отрезок интегрирования. В предположении существования и единственности решения задачи (1) параллельная схема метода первого порядка с контролем точности для численного решения (1) в вычислительной системе из p процессоров, N > p и s = N/p, если N кратно p, или s = [N/p] + g, в противном случае, записывается в виде [1]

 (2)

где yjs(n) ∈ Comp(j), || δn ||= 0.5h || fn + 1 - fn || ≤ ε, 1 ≤ j ≤ p, (j-1)⋅s + 1 ≤ js ≤ j⋅ s, ||⋅|| - некоторая норма в RN , || δn ||- норма вектора локальной погрешности, fn + 1 и fn - значения правой части системы (1) соответственно в точках t n+1 и tn, ε требуемая точность. Параллельная схема второго порядка для численного решения (1) имеет вид

 (3)

Неравенство для оценки устойчивости h | λmax |≤ D, где | λmax | -наибольшее собственное число якобиана, D - размер области устойчивости (для схемы (3) он равен 2). Выбор величины шага hn для схемы (2) определяется по формуле hn = qhn/1.1, где q = (ε /|| δn ||)1/2, а для схемы (3) по формуле hn = max(hn, qhn)/1.1, где q = (D / hnmax | )1/2 .

Укрупненная схема параллельных алгоритмов предложенных вычислительных схем (2), (3) состоит в следующем. Компоненты yjs(n) распределяются по p процессорам согласно блочной схеме распределения по s компонентов в каждом. Каждая задача Uj выполняется на proc(j), Uj ∈ proc(j). Proc(1) определяет значение шага hn и передает всем proc(j), используя коммуникационную операцию one-to- all. В каждом proc(j) вычисляются yjs(n), т.е. решается задача Uj, вычисляется значение локальной нормы || δn ||j и выполняется операция all-to-all. Для вычисления значений элементов fjs(y(n) ) вектора правой части разpaбатывается отдель ная функция. Таким образом, общая схема параллельного алгоритма сводится к линейной форме и обеспечивается возможность анализа и оценки его эффективности алгоритма.

Алгоритмы реализованы в виде отдельных функций языка С и включены в комплекс программ, предназначенных для численного моделирования процессов, описываемых жесткими системами на многопроцессорных вычислительных системах кластерной архитектуры. Коммуникационные операции реализованы функциями библиотеки MPI.

Расчеты, выполняемые на 99-процессорном кластере ИВМ СО РАН [4] показали, что параллельные схемы (2), (3) применяться в случаях, когда расчеты требуется проводить с невысокой точностью - порядка 1 % и ниже.

Список литературы

  1. Ващенко Г.В., Новиков Е.А. Параллельная реализация явных методов типа Рунге-Кутты // Вестник КрасГАУ. - 2010 - №2 - С. 14-18.
  2. Новиков Е.А. Явные методы для жестких систем. - Новосибирск: Наука, 1997.
  3. Хайрер Э., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Жесткие и дифференциально-алгебраические задачи. - М.: Мир, 1999.
  4. Исаев С.В., Малышев А.В., Шайдуров В.В. Развитие Красноярского центра параллельных вычислений // Вычислительные технологии. - 2006. - №11. - С. 28-33.


ВЛИЯНИЕ НИЗКОИНТЕНСИВНОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ НА ФОРМИРОВАНИЕ ЗДОРОВЬЯ ДЕТЕЙ

ВЛИЯНИЕ НИЗКОИНТЕНСИВНОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ НА ФОРМИРОВАНИЕ  ЗДОРОВЬЯ ДЕТЕЙ Проблема формирования здоровья детей в дошкольных образовательных учреждениях (ДОУ) остаётся актуальной до сих пор. На основе применения низкоинтенсивного лазерного излучения ( НИЛИ) были разработаны способы низкоинтенсивной лазерной реабилитации (НИЛР). В результате НИЛР детей достигались снижение показателей респираторной заболеваемости, экстренной медицинской помощи, госпитализации, временной утраты трудоспособности родителей. Рост среднего показателя здоровья и показателя динамичности здоровья отражали повышение уровня здоровья детей. НИЛР доступна, эффективна и безопасна. ...

21 04 2024 20:17:41

КИТАЙСКИЙ ЯЗЫК – ЯЗЫК БУДУЩЕГО

КИТАЙСКИЙ ЯЗЫК – ЯЗЫК БУДУЩЕГО Статья в формате PDF 250 KB...

14 04 2024 14:55:15

ФРЕЗЕРОВАНИЕ: ОПАСНОСТИ И ВРЕДНЫЕ ФАКТОРЫ

ФРЕЗЕРОВАНИЕ: ОПАСНОСТИ И ВРЕДНЫЕ ФАКТОРЫ Статья в формате PDF 253 KB...

12 04 2024 21:37:15

НОВЫЙ ПОДХОД К ИССЛЕДОВАНИЮ ПРИРОДЫ ТЕРРОРИЗМА

НОВЫЙ ПОДХОД К ИССЛЕДОВАНИЮ ПРИРОДЫ ТЕРРОРИЗМА Статья в формате PDF 136 KB...

05 04 2024 12:39:18

КИНОСЕМАНТИКА ИЛИ МОНТАЖНАЯ СХЕМА «ВПЕЧАТЛЕНИЙ»

КИНОСЕМАНТИКА ИЛИ МОНТАЖНАЯ СХЕМА «ВПЕЧАТЛЕНИЙ» Статья в формате PDF 109 KB...

04 04 2024 10:39:44

ТЕНЗОРНЫЙ АНАЛИЗ РИСКОВ БИЗНЕС-ПРОЦЕССОВ

ТЕНЗОРНЫЙ АНАЛИЗ РИСКОВ БИЗНЕС-ПРОЦЕССОВ Статья в формате PDF 111 KB...

03 04 2024 23:25:18

ДЕФИЦИТ ЙОДА В РОЛИ ГЛОБАЛЬНОГО ИНДИКАТОРА ЗДОРОВЬЯ

ДЕФИЦИТ ЙОДА В РОЛИ ГЛОБАЛЬНОГО ИНДИКАТОРА ЗДОРОВЬЯ Риск развития заболевания может оцениваться по показателям на уровне, хаpaктеризующем хронические пороговые эффекты. Исходя из этих данных, в качестве «индикаторных» состояний выделяется пониженное/повышенное содержание йода в организме обследуемого. В качестве «индикаторных» точек в концепции HEADLAMP для подтверждения заболеваний, хаpaктеризующих эффект недостатка йода в организме, могут выступать изменения в щитовидной железе на субклиническом уровне. Указанные параметры можно оценить на уровне лабораторной базы первичной медико-санитарной помощи при обследованиях населения. Цель HEADLAMP в оценке связи состояния здоровья населения с действием факторов окружающем среды значительно упростить и ускорить обоснованность выбора управленческих решений. ...

31 03 2024 11:45:40

БИОТЕХНИЧЕСКИЙ ЗАКОН И ПОДГОТОВКА ИСХОДНЫХ ДАННЫХ

БИОТЕХНИЧЕСКИЙ ЗАКОН И ПОДГОТОВКА ИСХОДНЫХ ДАННЫХ Статья в формате PDF 249 KB...

27 03 2024 20:42:17

ЗОЛОТОЕ СЕЧЕНИЕ И ОЦЕНКА ИЗОЛЯЦИИ ТРАНСФРМАТОРОВ

ЗОЛОТОЕ СЕЧЕНИЕ И ОЦЕНКА  ИЗОЛЯЦИИ ТРАНСФРМАТОРОВ Статья в формате PDF 152 KB...

19 03 2024 4:50:38

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::