ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ТЕОРЕМ СУЩЕСТВОВАНИЯ И ЕДИНСТВЕННОСТИ
равнения существует, когда оно единственно, решается так называемыми теоремами существования и единственности. Эти теоремы очень важны, как для самой теории, так и для пpaктики. Они гарантируют законность применения качественных методов теории дифференциальных уравнений для решения задач естествознания и техники. Численному интегрированию дифференциального уравнения обязательно должно предшествовать обращение к теоремам существования и единственности. И это необходимо делать для того, чтобы избежать недоразумений или вообще неправильных выводов.
Теорема существования. Если в уравнении
(1) функция f определена и непрерывна в некоторой ограниченной области D плоскости (x, y), то для любой точки (x0, y0) € D существует решение y(x) начальной задачи, y(x0) = y0, (2)
определенное на некотором интервале, содержащем точку x0.
Теорема существования и единственности. Если в уравнении функция f определена и непрерывна в некоторой ограниченной области D плоскости (x,y), причем она удовлетворяет в области D условию Липшица по переменной y, т.е.
Теорема о продолжении. При выполнении условий теоремы существования или теоремы существования и единственности всякое решение уравнения с начальными данными (x0, y0) Î D может быть продолжено до точки, сколь угодно близкой к границе области D. При этом в первом случае продолжение, вообще говоря, будет не обязательно единственным, во втором же случае оно единственно.
Для иллюстрации «недоразумений» возникающих при использовании численных решений дифференциальных уравнений без учета теорем существования рассмотрим несколько примеров.
Пример 1. Требуется, используя численный метод интегрирования Эйлера с итерационной схемой
c шагом h =0,1, решить начальную задачу
y(-1) = 0,21 (3)
на отрезке [-1, 3].
Решение. (c помощью пакета Mathcad)
Обратимся теперь к теореме существования. Для исследуемой начальной задачи (3) функция f, определяемая равенством, определена и непрерывна во всей плоскости (x, y) за исключением точек оси абсцисс.
Таким образом, в соответствии с теоремой существования существует решение y(x) начальной задачи (3), определенное на некотором интервале, содержащем точку x0 = -1, и это решение по теореме о продолжении может быть продолжено до значения, близкого к значению y(x) = 0. В результате численного интегрирования получаем решение начальной задачи (3) на некотором интервале (a, b), где a < -1; 1,3 < b < 1,32. Однако, учитывая, что это уравнение с разделяющимися переменными, можно аналитически найти частное решение, удовлетворяющее начальной задаче (3)
Интегрируя, получаем, что
Отсюда следует, что решение начальной задачи (3) существует только для
Оказывается, обращение к теореме существования (и к теореме о продолжении) позволило отсечь отрезок (приблизительно [1,315; 5]), на котором решение исходной начальной задачи (3) заведомо не существует. Одно же только численное интегрирование приводит к ошибочному результату. Дело здесь в том, что при приближении решения y = y(x) к оси Ox угол наклона кривой приближается к 90°. Поэтому пока аргумент x изменяется на величину 0,1 значение y успевает перескочить ось Ox, и мы попадаем на интегральную кривую, отличную от исходной. А это происходит потому, что метод Эйлера учитывает угол наклона только в текущей точке.
Пример 2. Используя метод Эйлера, а затем метод Эйлера-Коши, с шагом h = 0,1 и итерационной схемой
,
где
,
решить начальную задачу
y(-1) = -1, (4)
на промежутке [-1, 1].
Решение. На базе Mathcad методом Эйлера, а затем методом Эйлера-Коши будем иметь:
Рис. 2
Получили чертеж (рис. 3) отличный от чертежа, изображенного на (рис. 2). Чтобы лучше разобраться в причине расхождения в результатах, проинтегрируем исходную начальную задачу. Разделяя переменные, имеем
или, окончательно, .
Становится понятно, что решение по методу Эйлера приближает функцию y1(x) = x3, а по улучшенному методу Эйлера - функцию
При этом как, y1 так и y2 являются решениями начальной задачи (4), а значит, для рассматриваемой на промежутке [-1; 1] начальной задачи имеет место неединственность.
Обращаясь теперь к теореме существования и единственности, отметим, что, так как функция f, заданная равенством, непрерывна во всей плоскости (x, y), то из теоремы существования следует, что существует решение начальной задачи (4), определенное на некотором промежутке, содержащем точку x0 = -1, и это решение по теореме о продолжении может быть продолжено на любой промежуток. Далее, поскольку
,
то функция
удовлетворяет условию Липшица по переменной y в любой области, не содержащей точки оси Ox. Если же область содержит точку оси Ox, то нетрудно показать, что в ней указанная выше функция условию Липшица не удовлетворяет. Поэтому из теоремы существования и единственности (и теоремы о продолжении) следует, что в данном случае решение начальной задачи может быть продолжено единственным образом, по крайней мере, до оси Ox. Но поскольку прямая y = 0 является особой интегральной прямой для дифференциального уравнения
,
то, как только y станет равным нулю решение начальной задачи (4) не может быть единственным образом продолжено за точку O(0, 0).
Рис. 3
Итак, обращение в данном случае к теореме существования и единственности (и теореме о продолжении) позволило разобраться в результатах численного интегрирования. Если речь идет о единственном на промежутке [-1; 1] решении начальной задачи (4), то оно существует и определено лишь на отрезке [-1; 0]. В общем же случае таких решений несколько.
Список литературы
1. Roberts C.E. Jr. Why teach existence and uniqueness theorems in the first course in ordinary differential equations? // Int. J. Math. Educ. Sci. Technol. - 1976. - Vol. 7, № 1. - P. 41-44.
Статья в формате PDF 111 KB...
10 12 2024 9:54:18
Статья в формате PDF 131 KB...
09 12 2024 5:49:24
Статья в формате PDF 112 KB...
08 12 2024 22:54:26
Статья в формате PDF 322 KB...
06 12 2024 17:58:27
05 12 2024 5:28:18
Статья в формате PDF 310 KB...
04 12 2024 1:12:34
На материале 769 клинических наблюдений проведен анализ причин возникновения острого панкреатита после эндоскопической папиллотомии. Установлено, что основой их развития является прямое повреждение главного протока поджелудочной железы. Разработаны способы профилактики постманипуляционных панкреатитов. ...
03 12 2024 5:46:50
Статья в формате PDF 135 KB...
02 12 2024 22:49:15
Статья в формате PDF 107 KB...
01 12 2024 15:56:14
Статья в формате PDF 245 KB...
30 11 2024 11:12:44
Рассмотрены особенности проведения интервального тренинга в сравнении с равномерными тренировками. Определены границы применения интервального метода проведения тренировок. Разработан алгоритм проведения занятий с применением интервального метода тренировок. Приведены результаты курса тренировок и использованием интервального тренинга. ...
29 11 2024 16:55:45
Статья в формате PDF 262 KB...
27 11 2024 19:27:47
Статья в формате PDF 293 KB...
26 11 2024 17:36:24
В статье приводятся обобщенные данные о принципах лечения и современных подходах к дифференцированной терапии носовых кровотечений, отражена специфика коррекции геморрагического синдрома при кранио-фациальных травмах. Приводится критический анализ общепринятых положении о принципах лечения носовых геморрагий. ...
25 11 2024 3:36:53
Статья в формате PDF 130 KB...
23 11 2024 7:57:20
Исследованы показатели сердечнососудистой системы (систолическое, диастолическое давление, частота сердечных сокращений, пульсовое давление и минутный объем крови) у студентов обоего пола среднего учебного заведения в условиях учебной нагрузки до и после занятий в разные дни недели в начале и конце семестра. Возраст участников исследования составлял 18–20 лет. При анализе результатов выявлены пoлoвые и циркосептальные особенности реакции сердечнососудистой системы на учебную нагрузку. Было установлено, что в течение недели после учебной нагрузки происходит снижение артериального давления, особенно у дeвyшек, причем в начале семестра изменения в большей степени выражены в первой половине недели. Результаты свидетельствуют о развитии утомления и снижении адаптационных процессов, что необходимо учитывать при составлении расписания занятий и планировании учебной нагрузки. ...
22 11 2024 23:11:39
Статья в формате PDF 384 KB...
21 11 2024 7:27:45
Статья в формате PDF 199 KB...
20 11 2024 16:58:13
Статья в формате PDF 268 KB...
19 11 2024 14:43:13
18 11 2024 11:12:52
Статья в формате PDF 119 KB...
17 11 2024 16:35:21
Статья в формате PDF 275 KB...
15 11 2024 18:18:20
Статья в формате PDF 251 KB...
14 11 2024 18:52:23
Статья в формате PDF 220 KB...
13 11 2024 0:18:39
Статья в формате PDF 137 KB...
11 11 2024 7:40:24
Статья в формате PDF 107 KB...
10 11 2024 11:50:42
Статья в формате PDF 117 KB...
09 11 2024 1:29:41
Статья в формате PDF 122 KB...
08 11 2024 2:33:35
Стромальная закладка краниальных брыжеечных лимфатических узлов происходит у плодов белой крысы 17-18 суток в результате инвaгинации ветвей краниальной брыжеечной и подвздошно-ободочной артерий с окружающей рыхлой соединительной тканью в просвет кишечных лимфатических стволов. ...
07 11 2024 4:20:28
Статья в формате PDF 114 KB...
06 11 2024 11:31:26
Статья в формате PDF 142 KB...
05 11 2024 11:17:48
Статья в формате PDF 348 KB...
04 11 2024 5:11:59
Конкуренция является неотъемлемой частью рыночной экономики. В условиях стихийного развития рынка в России здоровая конкуренция явление нечастое. Большинство региональных товарных рынков в стране хаpaктеризуются крайне высоким уровнем монополизма, унаследованным от прежней планово-административной экономики. Борьба с проявлениями монополизма и содействие здоровой рыночной конкуренции актуальная задача сегодняшнего дня, решение которой возможно научно-обоснованными методами экономико-математического моделирования. ...
02 11 2024 20:47:29
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::