ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ТЕОРЕМ СУЩЕСТВОВАНИЯ И ЕДИНСТВЕННОСТИ
равнения существует, когда оно единственно, решается так называемыми теоремами существования и единственности. Эти теоремы очень важны, как для самой теории, так и для пpaктики. Они гарантируют законность применения качественных методов теории дифференциальных уравнений для решения задач естествознания и техники. Численному интегрированию дифференциального уравнения обязательно должно предшествовать обращение к теоремам существования и единственности. И это необходимо делать для того, чтобы избежать недоразумений или вообще неправильных выводов.
Теорема существования. Если в уравнении
(1) функция f определена и непрерывна в некоторой ограниченной области D плоскости (x, y), то для любой точки (x0, y0) € D существует решение y(x) начальной задачи, y(x0) = y0, (2)
определенное на некотором интервале, содержащем точку x0.
Теорема существования и единственности. Если в уравнении функция f определена и непрерывна в некоторой ограниченной области D плоскости (x,y), причем она удовлетворяет в области D условию Липшица по переменной y, т.е.
Теорема о продолжении. При выполнении условий теоремы существования или теоремы существования и единственности всякое решение уравнения с начальными данными (x0, y0) Î D может быть продолжено до точки, сколь угодно близкой к границе области D. При этом в первом случае продолжение, вообще говоря, будет не обязательно единственным, во втором же случае оно единственно.
Для иллюстрации «недоразумений» возникающих при использовании численных решений дифференциальных уравнений без учета теорем существования рассмотрим несколько примеров.
Пример 1. Требуется, используя численный метод интегрирования Эйлера с итерационной схемой
c шагом h =0,1, решить начальную задачу
y(-1) = 0,21 (3)
на отрезке [-1, 3].
Решение. (c помощью пакета Mathcad)
Обратимся теперь к теореме существования. Для исследуемой начальной задачи (3) функция f, определяемая равенством, определена и непрерывна во всей плоскости (x, y) за исключением точек оси абсцисс.
Таким образом, в соответствии с теоремой существования существует решение y(x) начальной задачи (3), определенное на некотором интервале, содержащем точку x0 = -1, и это решение по теореме о продолжении может быть продолжено до значения, близкого к значению y(x) = 0. В результате численного интегрирования получаем решение начальной задачи (3) на некотором интервале (a, b), где a < -1; 1,3 < b < 1,32. Однако, учитывая, что это уравнение с разделяющимися переменными, можно аналитически найти частное решение, удовлетворяющее начальной задаче (3)
Интегрируя, получаем, что
Отсюда следует, что решение начальной задачи (3) существует только для
Оказывается, обращение к теореме существования (и к теореме о продолжении) позволило отсечь отрезок (приблизительно [1,315; 5]), на котором решение исходной начальной задачи (3) заведомо не существует. Одно же только численное интегрирование приводит к ошибочному результату. Дело здесь в том, что при приближении решения y = y(x) к оси Ox угол наклона кривой приближается к 90°. Поэтому пока аргумент x изменяется на величину 0,1 значение y успевает перескочить ось Ox, и мы попадаем на интегральную кривую, отличную от исходной. А это происходит потому, что метод Эйлера учитывает угол наклона только в текущей точке.
Пример 2. Используя метод Эйлера, а затем метод Эйлера-Коши, с шагом h = 0,1 и итерационной схемой
,
где
,
решить начальную задачу
y(-1) = -1, (4)
на промежутке [-1, 1].
Решение. На базе Mathcad методом Эйлера, а затем методом Эйлера-Коши будем иметь:
Рис. 2
Получили чертеж (рис. 3) отличный от чертежа, изображенного на (рис. 2). Чтобы лучше разобраться в причине расхождения в результатах, проинтегрируем исходную начальную задачу. Разделяя переменные, имеем
или, окончательно, .
Становится понятно, что решение по методу Эйлера приближает функцию y1(x) = x3, а по улучшенному методу Эйлера - функцию
При этом как, y1 так и y2 являются решениями начальной задачи (4), а значит, для рассматриваемой на промежутке [-1; 1] начальной задачи имеет место неединственность.
Обращаясь теперь к теореме существования и единственности, отметим, что, так как функция f, заданная равенством, непрерывна во всей плоскости (x, y), то из теоремы существования следует, что существует решение начальной задачи (4), определенное на некотором промежутке, содержащем точку x0 = -1, и это решение по теореме о продолжении может быть продолжено на любой промежуток. Далее, поскольку
,
то функция
удовлетворяет условию Липшица по переменной y в любой области, не содержащей точки оси Ox. Если же область содержит точку оси Ox, то нетрудно показать, что в ней указанная выше функция условию Липшица не удовлетворяет. Поэтому из теоремы существования и единственности (и теоремы о продолжении) следует, что в данном случае решение начальной задачи может быть продолжено единственным образом, по крайней мере, до оси Ox. Но поскольку прямая y = 0 является особой интегральной прямой для дифференциального уравнения
,
то, как только y станет равным нулю решение начальной задачи (4) не может быть единственным образом продолжено за точку O(0, 0).
Рис. 3
Итак, обращение в данном случае к теореме существования и единственности (и теореме о продолжении) позволило разобраться в результатах численного интегрирования. Если речь идет о единственном на промежутке [-1; 1] решении начальной задачи (4), то оно существует и определено лишь на отрезке [-1; 0]. В общем же случае таких решений несколько.
Список литературы
1. Roberts C.E. Jr. Why teach existence and uniqueness theorems in the first course in ordinary differential equations? // Int. J. Math. Educ. Sci. Technol. - 1976. - Vol. 7, № 1. - P. 41-44.
Статья в формате PDF
121 KB...
09 07 2025 2:30:22
Статья в формате PDF
136 KB...
08 07 2025 10:49:26
07 07 2025 13:10:39
Статья в формате PDF
125 KB...
06 07 2025 16:56:24
Статья в формате PDF
112 KB...
05 07 2025 23:37:29
Статья в формате PDF
117 KB...
04 07 2025 21:29:12
Статья в формате PDF
244 KB...
03 07 2025 3:23:14
Статья в формате PDF
122 KB...
02 07 2025 2:51:21
01 07 2025 18:21:41
Статья в формате PDF
123 KB...
30 06 2025 12:52:10
Статья в формате PDF
117 KB...
28 06 2025 20:54:38
Статья в формате PDF
114 KB...
26 06 2025 16:20:42
Статья в формате PDF
183 KB...
25 06 2025 14:46:32
Статья в формате PDF
120 KB...
24 06 2025 22:33:27
Авторами проведено комплексное исследование сосудистых и нервных структур всего органокомплекса брюшной полости, что позволило подтвердить общие морфологические закономерности, свойственные млекопитающим отряда хищных, выявить хаpaктерные видовые и внутривидовые особенности васкуляризации и иннервации у пушных зверей клеточного содержания. Полученные новые данные о морфологии сосудистых и нервных образований органов брюшной полости млекопитающих являются оригинальными и дают не только полное представление об изученных структурах, но позволяют морфофункционально интерпретировать адаптогенные процессы, протекающие в интегративно-координационных системах организма пушных зверей, находящихся под интенсивным антропогенным воздействием в процессе доместикации.
...
23 06 2025 4:25:53
Статья в формате PDF
205 KB...
22 06 2025 4:35:25
Статья в формате PDF
105 KB...
21 06 2025 20:14:47
Статья в формате PDF
112 KB...
20 06 2025 20:47:36
Статья в формате PDF
113 KB...
19 06 2025 5:56:46
18 06 2025 16:17:46
Статья в формате PDF
102 KB...
16 06 2025 1:50:56
Ранее изучение химии способствует формированию у школьников целостного представления о природе, её материальном единстве, взаимосвязи живого и неживого, взаимообусловленности природных процессов. Приведены результаты 12-летнего эксперимента авторов по преподаванию химии с 7-ого класса, анонсированы программа и учебник «Волшебная химия. 7 класс», который создается в соавторстве с Заслуженным учителем России О.С. Гарбиеляном.
...
15 06 2025 2:36:40
Статья в формате PDF
126 KB...
14 06 2025 11:27:38
Статья в формате PDF
128 KB...
13 06 2025 19:49:16
Статья в формате PDF
174 KB...
12 06 2025 17:23:38
Статья в формате PDF
115 KB...
09 06 2025 14:43:13
Статья в формате PDF
107 KB...
08 06 2025 10:41:23
Статья в формате PDF
463 KB...
07 06 2025 16:17:44
Статья в формате PDF
256 KB...
06 06 2025 8:54:53
Статья в формате PDF
253 KB...
05 06 2025 3:49:21
Статья в формате PDF
232 KB...
04 06 2025 17:44:50
Статья в формате PDF
313 KB...
03 06 2025 2:59:19
Статья в формате PDF
114 KB...
02 06 2025 0:20:44
Статья в формате PDF
267 KB...
01 06 2025 10:50:17
В экспериментах по микроэволюции генетически модифицированных бактерий (ГМО) при непрерывном культивировании показано, что при переходе от одного стационарного состояния к другому в открытой биологической системе скорость производства энтропии должна возрастать, а не уменьшаться, как следует из основных положений неравновесной термодинамики. С точки зрения термодинамики проточные культуры микроорганизмов – хемостат и турбидостат – это открытые термодинамические системы, способные находиться в устойчивых стационарных состояниях. Причем, в соответствии с классификацией М.Эйгена (1973), хемостат соответствует случаю постоянных потоков, а турбидостат – случаю постоянной организации. Несмотря на кажущееся разнообразие микроэволюционных переходов в двух типах открытых систем при их изучении обнаруживаются общие закономерности. Важнейшей из них является возрастание потока использованной популяциями свободной энергии, и, следовательно, возрастание теплорассеяния и скорости производства энтропии. Результаты свидетельствуют о необходимости дальнейшего развития термодинамической теории открытых биологических систем, дальнейшего изучения общих закономерностей биологического развития.
...
31 05 2025 18:26:45
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::