ЛИНЕЙНАЯ ЗАДАЧА ТЕМПЕРАТУРНОЙ ДЕФОРМАЦИИ ТОНКОГО СТЕРЖНЯ > Полезные советы
Тысяча полезных мелочей    

ЛИНЕЙНАЯ ЗАДАЧА ТЕМПЕРАТУРНОЙ ДЕФОРМАЦИИ ТОНКОГО СТЕРЖНЯ

ЛИНЕЙНАЯ ЗАДАЧА ТЕМПЕРАТУРНОЙ ДЕФОРМАЦИИ ТОНКОГО СТЕРЖНЯ

Бабичева Д.С. Казарина М.И. Серпухова А.А. Кожевникова Е.В. Статья в формате PDF 113 KB

Введение

Создание современной космической лаборатории, на базе которой можно успешно проводить гравитационно-чувствительные процессы, является одним из самых актуальных проектов современности [1, 2]. Одной из важнейших хаpaктеристик такой лаборатории можно считать уровень микроускорений, возникающих внутри рабочей зоны технологического оборудования [3, 4]. Исследования [5-7] показывают, что наибольший вклад в поле микроускорений вносит квазистатическая компонента, порождаемая колебаниями больших упругих элементов лаборатории. Создан ряд моделей оценки этой компоненты [2, 5, 6, 8-10]. Однако задача оценки микроускорений актуальна и в другой постановке.

Постановка задачи

Необходимо оценить уровень микроускорений, создаваемый за счёт температурных колебаний упругих элементов КА. При прохождении КА "солнечной зоны", температура верхней поверхности ПСБ составляет около +1100С, в свою очередь температура нижней поверхности составляет около -1700С, что приводит к изменению формы ПСБ. Когда аппарат заходит в "теневую зону" температура верхней поверхности опускается до -1700С. Такой перепад температур вызывает температурные колебания больших упругих элементов КА (смещения центра масс всей системы).

Основные результаты работы

На данном этапе решена одномерная задача движения первоначально находящегося в покое тонкого стержня из-за резкого изменения поля температур. Модель тонкого стержня может быть использована для исследования температурных колебаний антенн космической лаборатории. Проведённые в работе исследования показали, что возможны ситуации, когда необходим учет микроускорений, создаваемых за счет анализируемого эффекта.

В дальнейшем планируется рассмотреть двумерную задачу с целью моделирования температурных движений ПСБ и создать конечноэлементную модель ПСБ. Оценка вклада микроускорений от таких движений ПСБ позволит выявить ситуации, когда необходим учет температурных колебаний.

СПИСОК ЛИТЕРАТУРЫ

  1. Седельников А.В. Проблема микроускорений: 30 лет поиска решения // Современные наукоемкие технологии. - 2005. - № 4. - С. 15-22.
  2. Авраменко А.А., Седельников А.В. Моделирование поля остаточной микрогравитации на борту орбитального КА // Изв. вузов Авиационная техника. - 1996. - № 4. - с. 22-25.
  3. Седельников А.В., Подлеснова Д.П. Космический аппарат «Спот-4» как пример успешной борьбы с квазистатической компонентой микроускорений // Известия высших учебных заведений. Северо-кавказский регион. - 2007. - № 4 (140). - с. 44-46.
  4. Sedelnikov A.V., Koruntjaeva S.S. Fractal model of microaccelerations: research of qualitative connection // European journal of natural history. - 2007. - p. 73-75.
  5. Седельников А.В. Фpaктальная оценка микроускорений для слабого демпфирования собственных колебаний упругих элементов космического аппарата. I // Изв. вузов. Авиационная техника. - 2006. - № 3. - с.73-75.
  6. Седельников А.В. Фpaктальная оценка микроускорений для слабого демпфирования собственных колебаний упругих элементов космического аппарата. II // Изв. вузов. Авиационная техника. - 2007. - № 3. - с. 62-64.
  7. Седельников А.В., Бязина А.В., Иванова С.А. Статистические исследования микроускорений при наличии слабого демпфирования колебаний упругих элементов КА // Научные чтения в Самарском филиале РАО. - Часть 1. Естествознание. - М.: Изд. УРАО. - 2003. - c. 137-158.
  8. Беляев М.Ю., Зыков С.Г., Рябуха С.Б. и др. Математическое моделирование и измерение микроускорений на орбитальной станции «Мир» // Известия РАН. Механика жидкости и газа. - 1994. - №5. - с. 5-14.
  9. Абрашкин В.И., Волков М.В., Егоров А.В., Зайцев А.С., Казакова А.Е., Сазонов В.В. Анализ низкочастотной составляющей в измерениях угловой скорости и микроускорения, выполненных на спутнике ФОТОН 12 // Космические исследования. - 2003. - том 41. - № 6. - с. 632-651.
  10. Sedelnikov A.V. Modelling of microaccelerations with using of Weierstass-Mandelbrot function // Actual problems of aviation and aerospace systems. - 2008. - № 1(26). - pp. 107-110.


ОСОБЕННОСТИ ПРОДУКЦИИ ЦИТОКИНОВ ПРИ ВИЧ-ИНФЕКЦИИ

ОСОБЕННОСТИ ПРОДУКЦИИ ЦИТОКИНОВ ПРИ ВИЧ-ИНФЕКЦИИ По мере прогрессирования ВИЧ-инфекции наблюдается дисбаланс в выработке цитокинов, хаpaктеризующийся переключением Тh-1 ответа на Тh-2. Это, в свою очередь, приводит к прогрессированию иммуносупрессии и развитию оппортунистических инфекций. Определено, что IFN-γ, IL-2, IL-4, IL-10 и TGFβ могут обладать разнонаправленным действием в зависимости от локальных условий. Оценка иммунологических параметров может определять прогноз развития заболевания и коpрегировать интенсивность противовирусной терапии. ...

15 04 2024 3:48:50

ИСПОЛЬЗОВАНИЕ ТЕХНОЛОГИИ МУЛЬТИМЕДИА В ОБУЧЕНИИ

ИСПОЛЬЗОВАНИЕ ТЕХНОЛОГИИ МУЛЬТИМЕДИА В ОБУЧЕНИИ Статья в формате PDF 246 KB...

05 04 2024 11:26:38

ЖИЗНЬ ЭТО...

ЖИЗНЬ ЭТО... «Что такое жизнь?» Этот вопрос занимает человечество с древнейших времён. Многие философы и естествоиспытатели пытались и пытаются разрешить этот вопрос, определить жизнь как явление. Существует множество определений жизни, но, несмотря на это, среди них нет ни одного, который бы наиболее полно отразил основной принцип существования жизни, её сущность. В предлагаемой вашему вниманию статье сделана ещё одна попытка объяснения феномена жизни. Её основная идея: Жизнь - это самовоспроизводящийся катализатор диссипации энергии. Что касается самовоспроизведения, то здесь всё более или менее понятно, а вот словосочетание «катализатор диссипации» требует некоторых разъяснений. Диссипация - термин, обозначающий рассеяние энергии, т.е. её переход с потенциально более высокого уровня на более низкий - тепловой уровень. В свете рассматриваемого определения жизни подразумевается, что энергия квантов солнечного света, которые могут стрaнcтвовать в космосе «бесконечно», будучи поглощенной растениями поэтапно диссипатируется, в процессах жизнедеятельности и формирования собственных структур последовательными участниками пищевой цепи (растение - травоядное - хищник - падальщики), в тепловое излучение. Таким образом, живое вещество, многократно ускоряя процесс диссипации энергии солнечных квантов в тепловое излучение, играет в нем роль специфического катализатора. Далее рассматривается ряд важных следствий, вытекающих из данного определения. ...

04 04 2024 17:18:51

Компьютерные технологии в медицине

Компьютерные технологии в медицине Статья в формате PDF 111 KB...

03 04 2024 8:22:21

ИЗУЧЕНИЕ ХИМИЧЕСКОГО СОСТАВА И СПЕКТРОФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ АМИНОКИСЛОТ В ТРАВЕ ОВСА ПОСЕВНОГО

ИЗУЧЕНИЕ ХИМИЧЕСКОГО СОСТАВА И СПЕКТРОФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ АМИНОКИСЛОТ В ТРАВЕ ОВСА ПОСЕВНОГО Изучен химический состав травы овса посевного. Качественными реакциями обнаружены аминокислоты, крахмал и флавоноиды. Разработана методика спекторофотометрического определения суммы аминокислот по реакции с нингидрином. Установлено, что в траве овса содержится до 1% аминокислот в пересчете на кислоту глютаминовую. ...

26 03 2024 4:58:17

ВЛИЯНИЕ БЦБК НА БАЙКАЛ

ВЛИЯНИЕ БЦБК НА БАЙКАЛ Статья в формате PDF 276 KB...

22 03 2024 3:21:31

СИНГЕМЕРОБИЯ ПАРЦИАЛЬНЫХ ФЛОР РЕГИОНА КАК ПОКАЗАТЕЛЬ АНТРОПОГЕННОЙ ТРАНСФОРМАЦИИ ФИТОСИСТЕМ (НА ПРИМЕРЕ ЯКУТИИ)

СИНГЕМЕРОБИЯ ПАРЦИАЛЬНЫХ ФЛОР РЕГИОНА КАК ПОКАЗАТЕЛЬ АНТРОПОГЕННОЙ ТРАНСФОРМАЦИИ ФИТОСИСТЕМ (НА ПРИМЕРЕ ЯКУТИИ) В работе приведены результаты анализа степеней сингемеробии парциальных флор Якутии в разрезе флористических районов. Отмечается роль географических факторов в формировании групп районов, объединенных по степени сингемеробии флор крупных геоботанических типов. ...

20 03 2024 4:56:16

«Квантовая медицина»  медицина будущего

«Квантовая медицина»  медицина будущего Статья в формате PDF 104 KB...

18 03 2024 8:56:49

МИНИМИЗАЦИЯ РАБОТЫ ПОДЪЕМА ТЕЛА В ОДНОРОДНОМ ПОЛЕ СИЛЫ ТЯЖЕСТИ

МИНИМИЗАЦИЯ РАБОТЫ ПОДЪЕМА ТЕЛА В ОДНОРОДНОМ ПОЛЕ СИЛЫ ТЯЖЕСТИ Работа подъема тела в однородном поле силы тяжести всегда больше потенциальной энергии . Для минимизации работы силой тяги, равной , необходимо отключать силу тяги на некоторой высоте . Дальнейшее движение вверх до высоты  происходит по инерции. Только в случае  работа подъема будет стремиться к минимальному значению, равному . ...

17 03 2024 7:43:16

ЛАЗЕРНАЯ ТЕРМИЧЕСКАЯ ОБРАБОТКА ТИТАНА

ЛАЗЕРНАЯ ТЕРМИЧЕСКАЯ ОБРАБОТКА ТИТАНА Статья в формате PDF 123 KB...

13 03 2024 2:42:31

ПЕРЕХОДНЫЕ СЛОИ МЕЖДУ ПЛАЗМОЙ И АНОДОМ

ПЕРЕХОДНЫЕ СЛОИ МЕЖДУ ПЛАЗМОЙ И АНОДОМ Статья в формате PDF 128 KB...

10 03 2024 11:52:36

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::