РАСПРЕДЕЛЕННОЕ УСИЛЕНИЕ ОПТИЧЕСКИХ СОЛИТОНОВ > Полезные советы
Тысяча полезных мелочей    

РАСПРЕДЕЛЕННОЕ УСИЛЕНИЕ ОПТИЧЕСКИХ СОЛИТОНОВ

РАСПРЕДЕЛЕННОЕ УСИЛЕНИЕ ОПТИЧЕСКИХ СОЛИТОНОВ

Татаркина О.А. Статья в формате PDF 264 KB Основу системы связи в мире составляют волоконно-оптические сети. Быстрый прогресс в изучении оптических линий связи вызван возрастающими потребностями в телекоммуникационных услугах, в достижении предельных возможностей существующих волоконно-оптических систем и в экономической целесообразности модернизации этих систем. Одним из направлений, связанных с дальнейшим повышением широкополосности передачи, является использование оптических солитонов.

Существенным шагом в развитии солитонных систем связи стало обнаружение солитонного режима распространения световых импульсов в линиях с управляемой дисперсией. Нелинейный световой импульс, распространяющийся в такой линии называют солитоном с управляемой дисперсией (ДУ-солитон). Достоинства ДУ-солитонов позволяют рассматривать солитонные линии связи с переменной дисперсией в качестве кандидатов для создания протяженных высокоскоростных линий на основе технологии WDM.

После изобретения оптических усилителей потери в волоконных световодах перестали быть основным фактором, ограничивающим работоспособность волоконных систем связи. Однако проблема оптимального усиления оптических солитонов все ещё остается одной из центральных проблем полностью оптических солитонных линий связи.

Первоначально в качестве усилителей оптических сигналов в ВОЛС использовались эрбиевые волоконно-оптические усилители EDFAs. Полоса частот эрбиевых усилителей сильно ограничивает число передающих каналов. Вариации коэффициента усиления приводят к тому, что мощность одного канала начинает превышать мощность другого в WDM-системе связи, вследствие чего увеличиваются ошибки при передаче данных и ограничивается длина усилительного участка LА.

Ограничения, связанные с применением эрбиевых усилителей, могут быть преодолены при использовании распределенного усиления.

В последние годы были проведены работы теоретического и экспериментального хаpaктера, посвященные изучению ВОЛС с распределенным усилением на основе рамановских усилителей [1], а также с использованием различных вариантов усилительных схем. В работе [2] выполнено сравнение функционирования систем, реализованных с использованием сосредоточенных усилителей EDFAs, рамановских усилителей (d-Raman) и распределенного усиления EDFA (d-EDFA).

Для численного моделирования функционирования системы в обобщенное уравнение Шредингера необходимо включить прострaнcтвенное изменение коэффициента усиления g(z) и волоконные потери:

, (1)

где  - медленно меняющаяся амплитуда волнового пакета, - это параметр ДГС, g - параметр нелинейности, ответственный за ФСМ и a - учитывает волоконные потери.

В системах с дисперсионным управлением, все четыре параметра  и a изменяются с изменением расстояния z. Параметр  - рамановская постоянная времени. Численное значение  принято равным 3фс [3].

При распределенном и сосредоточенном усилении мощность накачки выбирается согласно условию (2)

. (2)

Для обеспечения условия появляется необходимость оптимизации параметров системы, таких как плотность легирования, мощность накачки. В d-EDFA схеме понижением концентрации примесей можно обеспечить небольшое значение G(z). В схеме d-Raman такой возможности нет, так как рамановское усиление зависит только от мощности накачки.

Сравнение эффективности рассматриваемых схем усиления можно произвести посредством расчета Q-фактора [4].

Для скорости 40 Гбит/с дисперсионная карта состояла из двух 50 км оптических волокон при LА=100 км. Результаты зависимости Q-фактора от расстояния передачи ясно показывают преимущество распределенного усиления для высокоскоростных систем. При использовании сосредоточенных EDFAas расстояние передачи ограничивается значением 500 км, но увеличивается до 3000 км для случая d-EDFA. Использование рамановского усиления также увеличивает расстояние, но не в такой степени как для d-EDFA.

Для скорости 80 Гбит/с используется плотное дисперсионное управление. При этом на усилительном участке 40 км располагается 9 периодов дисперсионной карты. Каждый период состоит из секций длиной 2,32 км и 2,12 км. Результаты моделирования в этом случае сопоставимы для схем d-Raman и d-EDFA, так как плотное дисперсионное управление уменьшает «бриз» импульсов и их взаимодействие.

Таким образом, cтепень улучшения параметров системы зависит не только от выбранной схемы усиления, но и от прострaнcтвенного распределения дисперсии. Использование распределенного усиления позволяет увеличить дальность передачи высокоскоростных солитонных систем. В этой связи изучение солитонных систем с распределенным усилением в настоящее время представляется современным и актуальным.

СПИСОК ЛИТЕРАТУРЫ

  1. Насиева И.О., Федорук М.П. Волоконно - оптические линии связи с распределенным рамановсим усилением. - Квантовая электроника.-2003, №10.
  2. Zhi M. Liao and Govind P. Agrawal. Role of distributed amplification in designing high-capacity soliton systems. - OPTICS EXPRESS. - 2001, № 2.
  3. Atieh A.K. Measuring the Raman time constant (TR) for soliton pulses in standart single-mode fiber. - J. Lightwave Technol.-1999, №2.
  4. Убайдуллаев Р.Р. Протяженные ВОЛС на основе EDFA. - Научно-технический журнал «Lightwave», №1, 2003.

Работа представлена на заочную электронную конференцию «Проблемы передачи и обработки информации», 20-25 сентября 2004г., поступила в редакцию 28.12.04 г.



ЭКОЛОГИЧЕСКАЯ ЭКСПЕРТИЗА

ЭКОЛОГИЧЕСКАЯ ЭКСПЕРТИЗА Статья в формате PDF 92 KB...

07 04 2024 13:29:44

ФАКТОРНЫЙ АНАЛИЗ ЗАГРЯЗНЕНИЯ РОДНИКОВ

ФАКТОРНЫЙ АНАЛИЗ ЗАГРЯЗНЕНИЯ РОДНИКОВ Получены закономерности взаимного влияния концентрации по 22 видам загрязнения семи родников, отобранных для исследования моделированием взаимосвязей между факторами. Дана полная корреляционная матрица монарных (на основе рангового или рейтингового распределения) и бинарных (между парами взаимно влияющих факторов) связей. Коэффициент функциональной связности равен сумме коэффициентов корреляции, разделенной на произведение числа строк на количество столбцов. Этот статистический показатель для всей сети родников применим при сопоставлении разных территорий. Первое место как влияющий параметр занимает общее микробное число, а как зависимый показатель – цветность. Анализ всех 484 моделей показал, что высокой предсказательной силой обладают слабые и средние факторные связи. Они же зачастую приводят к научно-техническим решениям мировой новизны на уровне изобретений. ...

28 03 2024 18:22:18

Статистические закономерности хронологии космонавтики

Статистические закономерности хронологии космонавтики В статье описана и исследована методами математической статистики хронологическая аномалия космонавтики. Обоснован биномиальный закон распределения числа хронологических совпадений. Показано, что вероятность случайного появления рассматриваемых совпадений весьма мала. Метод исследования, применяемый в работе, преимущественно основан на статистическом анализе хронологии при помощи параметризации дат событий и проверки соответствующего критериального свойства. Используются параметры: условные номера дней с начала летоисчисления N, с начала года n и год Г. Основными информативными параметрами являются интервалы времени между событиями.Обоснован биномиальный закон распределения числа хронологических совпадений. Показано, что вероятность случайного появления рассматриваемых совпадений весьма мала. ...

22 03 2024 20:55:53

ПРАКТИЧЕСКИЕ ВОПРОСЫ МАРШРУТИЗАЦИИ В IP-СЕТЯХ

ПРАКТИЧЕСКИЕ ВОПРОСЫ МАРШРУТИЗАЦИИ В IP-СЕТЯХ Статья в формате PDF 293 KB...

20 03 2024 22:22:10

МЕХАНИКА

МЕХАНИКА Статья в формате PDF 250 KB...

15 03 2024 17:53:53

ИСЛЕДОВАНИЕ РАБОТЫ КОТЕЛЬНОГО АГРЕГАТА ТП-13/В, РАБОТАЮЩЕГО НА ПРИРОДНО-ДОМЕННОЙ СМЕСИ ГАЗОВ

ИСЛЕДОВАНИЕ РАБОТЫ КОТЕЛЬНОГО АГРЕГАТА ТП-13/В, РАБОТАЮЩЕГО НА ПРИРОДНО-ДОМЕННОЙ СМЕСИ ГАЗОВ В статье отражен анализ работы котельного агрегата ТП-13/В, работающего на смеси природного и доменного газов, выявлены основные недостатки его работы. Также предложены мероприятия, позволяющие повысить эффективность котельного агрегата и решить некоторые проблемы, связанные с его работой. Рассмотрена целесообразность внесения предложенных изменений. ...

13 03 2024 8:23:19

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::