Дискриминация, как средство моделирования трудоохранных метроприятий > Полезные советы
Тысяча полезных мелочей    

Дискриминация, как средство моделирования трудоохранных метроприятий

Дискриминация, как средство моделирования трудоохранных метроприятий

Жижин К.С. 1
1 ГБОУСПОРО «Ростовский базовый медицинский колледж»
В работе рассматриваются приемы дискриминации признаков производственных травм с использованием модуля «Дискриминантный анализ» статистического софта «Statistica» v.6. Отражена простота анализа и получения выводов. Рекомендации могут быть реализованы специалистами, чей математический багаж не превышает базиса средней общеобразовательной школы. Статья в формате PDF 654 KB трудовой процессдискриминация травмы

Трудоохранные мероприятия в современных условиях не могут не базироваться на переработке достаточно плотного потока статистических данных. Без них невозможно прогнозировать ситуацию, стоить стратегию улучшения условий труда. В череде этих проблем самая существенная – классифицирование производственных травм, профессиональных заболеваний и отравлений при формировании динамического ряда. Лет 15–20 назад такая работа требовала привлечения труда профессионалов-программистов, занимала много времени на обработку и анализ полученных результатов. Современные статистические софты в значительной мере облегчили эту работу специалистам трудоохранных служб, поскольку подоплека их интуитивно понятна даже человеку с математическим базисом на уровне 10–11 классов средней общеобразовательной школы.

Материалы и методы исследования

Дискриминантный анализ, применение которого мы демонстрируем в данном сообщении – достаточно сложный раздел математической статистики. И, тем не менее, с помощью модуля «Дискриминантный анализ» из американского статистического софта «Statistica» v.6 мы хотели бы показать насколько просто провести процесс дискриминации. Примером в данном сообщении служит классификация производственных травм по тяжести.

Результаты исследований и их обсуждение

Данная выборка включает 11 единиц наблюдений, отобранных случайным образом из совокупности в 100 единиц. Травмы будем классифицировать, опираясь на следующие дискриминационные признаки: количество дней нетрудоспособности работника из-за одной травмы, число травм, случившихся у него в течение года, расходы на лечение в тыс. руб. (в расчете на одну травм), индекс травмирования, то есть отношение числа травм к числу дней нетрудоспособности, табл. 1. Подразумевается, что программа «Statistica» v.6. уже установлена, поэтому обходим процедуру её инсталляции на жесткий диск компьютера.

На верхней панели окна щелкаем левой кнопкой «мыши» на слове Анализ, отыскиваем Многомерный разведочный анализ, в нем – Дискриминантный анализ (рис. 1).

Во вкладке Быстрый выбираем Дополнительные параметры (пошаговый анализ). После нажатия на кнопку Переменные отобразится стандартное диалоговое окно Выбор переменных (его мы не показываем) (рис. 2). В этом окне укажем группирующую переменную и независимые переменные, которые должны быть использованы для дискриминации типа травм. В нашем случае группирующим признаком будет тяжесть травмы.

Нажимаем кнопку ОК, и переходим к следующему этапу: Результаты.., рис. 3. Просмотр результатов дискриминантного анализа, и классификация наблюдений начинаются с верхней части. В белом прямоугольнике, представлены значения самого существенного показателя дискриминации – лямбды Уилкса, пределы её изменений: 0–1. В нашем случае значение лямбды достаточно мало – 0,0026 (Суть в том, что, если это значение близко к нулю, то дискриминация прошла успешно, если же близко к единице, то дискриминация сомнительна) (рис. 3). Помимо этого, полученный в опыте, своеобразный показатель достоверности вывода, критерий Фишера «F» также высок – 23,2, почти в три раза перекрывает свое стандартное значение – 8,10 (в скобках).

Таблица 1

Классификация травм

№ п/п

Var1

Дни

Var2

Случаи

Var3

Стоимость лечения

Var4

случаи/дни

Var5

Тяжесть травмы

1

50

3

1,2

0,06

Легкая

2

50

3

1,4

0,06

Легкая

3

64

2

5,6

0,05

Средней тяжести

4

65

2

4,8

0,05

Тяжелая

5

67

3

5,6

0,04

Средней тяжести

6

63

3

5,7

0,05

Средней тяжести

7

46

4

1,4

0,06

Легкая

8

69

3

5,1

0,04

Средней тяжести

9

62

2

4,5

0,03

Тяжелая

10

59

3

4,8

0,05

Тяжелая

11

45

4

1,3

0,08

Легкая

Многомерный разведочный анализ Дискриминантный анализ

Рис. 1. Окно Анализ программы «Statistica» v.6

Рис. 2. Окно Дискриминантный анализ программы «Statistica» v.6

Рис. 3. Окно Результаты анализа

Для подтверждения и закрепления факта дискриминации определим еще несколько показателей. На первом месте – Расстояние Махаланобиса, которое является мерой близости отдельно взятых наблюдений и центром каждой совокупности, из включенных в процесс дискриминации. Чем ближе наблюдение к центроиду конкретной совокупности, тем в большей степени можно быть уверенным, что наблюдение извлечено именно из неё. Расстояние Махаланобиса может быть рассчитано при нажатии на кнопку Квадраты расстояния Махаланобиса во вкладке Классификация. Дифференциация случаев травмирования по этому признаку отражена в табл. 3 (цветом выделены статистически значимые показатели).

Кроме Расстояния Махаланобиса можно вычислить еще и условную (или апостериорную) вероятность принадлежности наблюдения к определенной совокупности. Её условность в том, что она зависит от знания исследователем значений переменных в модели. Этот показатель получают, нажав на кнопку Апостериорные вероятности. В данном примере точность классификации очень высока, даже с учетом того, что это апостериорная классификация. К слову сказать, такая точность редко достигается и редко, когда нужна.

Таблица 2

Квадраты расстояний Махаланобиса

Квадраты расстояний Махаланобиса (Таблица данных 1)

№ п/п

Тяжесть травмы

Легкая

Средней тяжести

Тяжелая

1

Легкая

1,118

1011,483

688,3675

2

Легкая

3,017

929,539

620,7845

3

Средней тяжести

1042,041

0,971

36,0575

4

Тяжелая

741,390

23,638

4,0505

5

Средней тяжести

1048,528

3,473

43,2491

6

Средней тяжести

1073,374

2,437

41,9351

7

Легкая

3,473

1048,528

721,5672

8

Средней тяжести

934,432

4,560

21,1041

9

Тяжелая

678,040

45,932

3,5372

10

Тяжелая

682,858

37,428

1,2326

11

Легкая

4,130

1109,123

772,3102

Для проверки работоспособности представленной модели с учетом вероятностей в исходную табл. 1 введем переменные под № 12, 13, 14 с их значениями, табл. 3

Таблица 3

Проверка работоспособности методики анализа

№ п/п

Var1

Дни

Var2

Случаи

Var3

Стоимость

Var4 Случаи/дни

Var5

Тяжесть травмы

1

50

3

1,2

0,06

Легкая

2

50

3

1,4

0,06

Легкая

3

64

2

5,6

0,05

Средней тяжести

4

65

2

4,8

0,05

Тяжелая

5

67

3

5,6

0,04

Средней тяжести

6

63

3

5,7

0,05

Средней тяжести

7

46

4

1,4

0,06

Легкая

8

69

3

5,1

0,04

Средней тяжести

9

62

2

4,5

0,03

Тяжелая

10

59

3

4,8

0,05

Тяжелая

11

45

4

1,3

0,08

Легкая

12

44

4

1

0,09

 

13

43

5

1,1

0,13

 

14

67

2

6

0,03

 

При повторении анализа машина мгновенно классифицирует травмы по тяжести, отнеся 12 и 13 случаи к легким, а 14 – к среднетяжелым травмам, табл. 4. Примечательно, что классификация наблюдений по вероятностным признакам оказалась гораздо показательней расчета квадратов Расстояний Махаланобиса: дифференциация в данном случае равна 1,0 или 100 %.

Таблица 4

Апостериорные вероятности травмирования

Апостериорные вероятности

№ п/п

Тяжесть травмы

Легкая

Тяжелая

Средней тяжести

1

Легкая

1,000000

0,000000

0,000000

2

Легкая

1,000000

0,000000

0,000000

3

Средней тяжести

0,000000

0,000000

1,000000

4

Тяжелая

0,000000

0,999996

0,000004

5

Средней тяжести

0,000000

0,000000

1,000000

6

Средней тяжести

0,000000

0,000000

1,000000

7

Легкая

1,000000

0,000000

0,000000

8

Средней тяжести

0,000000

0,000001

0,999999

9

Тяжелая

0,000000

1,000000

0,000000

10

Тяжелая

0,000000

1,000000

0,000000

11

Легкая

1,000000

0,000000

0,000000

12

---

1,000000

0,000000

0,000000

13

---

1,000000

0,000000

0,000000

14

---

0,000000

0,000000

1,000000

Выводы

Хотя данный пример нами сознательно упрощен, тем не менее, хорошо иллюстрирует основную идею дискриминации. Для «перестраховки» в ответственных случаях следует проводить дискриминацию в два этапа: сначала построить функции классификации и только потом проводить оценку их качества.

При использовании данного вида анализа необходимо учитывать несколько ограничений: нормальность и линейность эмпирического распределения, однородность дисперсий и ковариаций сравниваемых совокупностей. Однако, как показала наша пpaктика, методика достаточно «терпима» к отклонениям от этих условностей.



«КОНСУЛЬТАТИВНАЯ ПСИХОЛОГИЯ»

«КОНСУЛЬТАТИВНАЯ ПСИХОЛОГИЯ» Статья в формате PDF 344 KB...

11 12 2024 1:37:15

ГЕОЛОГИЧЕСКИЕ ЗАКОНЫ

ГЕОЛОГИЧЕСКИЕ ЗАКОНЫ Статья в формате PDF 156 KB...

10 12 2024 22:56:54

УЧАСТИЕ СТУДЕНТОВ В НАУЧНЫХ ИССЛЕДОВАНИЯХ ФАКТОРОВ ТРЕВОЖНОСТИ И АДАПТАЦИИ

УЧАСТИЕ СТУДЕНТОВ В НАУЧНЫХ ИССЛЕДОВАНИЯХ ФАКТОРОВ ТРЕВОЖНОСТИ И АДАПТАЦИИ Исследование факторов тревожности является ключевым подходом к пониманию адаптационных механизмов в норме и дезадаптационных расстройств в случаях доминировании тревожности. Повышенные уровни тревожности чаще выявляются у школьников первых классов и студентов первых курсов. У старших школьников и студентов отмечается снижение уровней тревожности, благодаря механизмам психологической адаптации. Напротив, у преподавателей повышение показателей дезадаптации – невротизации и эмоционального «выгорания», коррелирует со стажем работы. Исследованы информированность молодёжи о наркомании, алкоголизме, здоровом образе жизни и её адаптационная направленность. Полученные данные необходимо учитывать при реформах образовательных программ и стандартов. ...

08 12 2024 20:44:50

Влияние фонового квч излучения на биологические объекты и циркадные ритмы больных гипертонической болезнью

Влияние фонового квч излучения на биологические объекты и циркадные ритмы больных гипертонической болезнью ФРИ-терапия (СЕМ-терапия) основана на использовании материалов с управляемой энергетической структурой (CEM – Controlled Energy Material). Излучателем сверхслабых излучений КВЧ-диапазона при интенсивности 10–16–10–20 Вт/см2 является диод Ганна. Представлена оценка влияния фонового миллиметрового излучения на стафилококки, на нативную кровь, а также на вегетативный статус пациента гипертонической болезнью в сравнительном аспекте по графикам циркадных ритмов пульса при приеме: препаратов, не влияющих на ритм сердца; структурированной воды, активированной посредством аппарата «Cem-Tech»; полной дозы препарата лодоза; воды, содержащей информацию о порошкообразном лодозе. Рассмотренная индивидуальная динамика параметров ритмограммы, вычисленных на основе регистрации 500 межпульсовых интервалов, оценивалась с вычислением показателей уровня статистической значимости различий. Показано, что прием препарата Лодоз и воды содержащей информацию о препарате Лодоз сопровождается сходными изменениями, как частоты пульса, так и внутренней структуры информационного паттерна HRV. Динамика параметров ритма сердца свидетельствует о мобилизации холинергических механизмов регулирования. ...

29 11 2024 13:11:34

ДИНАМИКА ПАРАМЕТРОВ НАДПОЧЕЧНИКОВ ЧЕЛОВЕКА ПРИ СТАРЕНИИ ПО ДАННЫМ РЕНТГЕН КОМПЬЮТЕРНОЙ ТОМОГРАФИИ

ДИНАМИКА ПАРАМЕТРОВ НАДПОЧЕЧНИКОВ ЧЕЛОВЕКА ПРИ СТАРЕНИИ ПО ДАННЫМ РЕНТГЕН КОМПЬЮТЕРНОЙ ТОМОГРАФИИ Методом рентген-компьютерной томографии изучены надпочечники 248 мужчин и 203 женщин зрелого (41 – 60 лет), пожилого (61 – 75 лет) и старческого возрастов (76 и более лет). Установлено, что как форма, так и динамика инволюции надпочечников человека проявляют изменчивость и пoлoвoй диморфизм. Выявлена преимущественная возрастная элиминация субъектов с L-формами надпочечников. Полученные результаты можно интерпретировать в пользу предположения о значительной стабильности макропараметров и наличии высокой морфофункциональной устойчивости надпочечников. ...

27 11 2024 20:33:58

ЛЕС – ЗЕЛЕНОЕ ЗОЛОТО РОССИИ

ЛЕС – ЗЕЛЕНОЕ ЗОЛОТО РОССИИ Статья в формате PDF 286 KB...

26 11 2024 18:32:25

ГЛОБАЛИЗАЦИЯ ОБРАЗОВАНИЯ

ГЛОБАЛИЗАЦИЯ ОБРАЗОВАНИЯ Статья в формате PDF 119 KB...

17 11 2024 23:17:50

ВЕЛИКАЯ ТЕОРЕМА ФЕРМА И ФРАКТАЛЬНАЯ ГЕОМЕТРИЯ

ВЕЛИКАЯ ТЕОРЕМА ФЕРМА И ФРАКТАЛЬНАЯ ГЕОМЕТРИЯ Статья в формате PDF 243 KB...

14 11 2024 21:22:27

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ УПРАВЛЕНИЯ

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ УПРАВЛЕНИЯ Статья в формате PDF 226 KB...

12 11 2024 3:43:51

РАЗВИТИЕ ЕСТЕСТВЕННОНАУЧНЫХ СПОСОБНОСТЕЙ ОДАРЕННЫХ ДЕТЕЙ В СИСТЕМЕ ДОПОЛНИТЕЛЬНОГО ЭКОЛОГИЧЕСКОГО ОБРАЗОВАНИЯ

РАЗВИТИЕ ЕСТЕСТВЕННОНАУЧНЫХ СПОСОБНОСТЕЙ ОДАРЕННЫХ ДЕТЕЙ В СИСТЕМЕ ДОПОЛНИТЕЛЬНОГО ЭКОЛОГИЧЕСКОГО ОБРАЗОВАНИЯ Система дополнительного экологического образования, базирующаяся на использовании современных педагогических моделей личностно-ориентированного обучения; применении передовых образовательных технологий, активных методов и форм полевой экологии, проектной деятельности, вовлечении в общественно-значимую исследовательскую и пpaктическую работу, создает оптимальные условия для развития креативных способностей одаренных детей в естественнонаучной области. ...

04 11 2024 9:37:27

ДИЕТИЧЕСКИЕ ПРОДУКТЫ ПИТАНИЯ – ОСНОВА ЗДОРОВЬЯ

ДИЕТИЧЕСКИЕ ПРОДУКТЫ ПИТАНИЯ – ОСНОВА ЗДОРОВЬЯ Статья в формате PDF 284 KB...

03 11 2024 16:25:16

ЭТНОЭПИДЕМИОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ДАЛЬНЕГО ВОСТОКА

ЭТНОЭПИДЕМИОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ДАЛЬНЕГО ВОСТОКА Статья в формате PDF 102 KB...

02 11 2024 16:28:35

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::