СИМУЛЯЦИЯ СЕТИ С ПЕРЕМЕННОЙ ТОПОЛОГИЕЙ С ИСПОЛЬЗОВАНИЕМ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ > Полезные советы
Тысяча полезных мелочей    

СИМУЛЯЦИЯ СЕТИ С ПЕРЕМЕННОЙ ТОПОЛОГИЕЙ С ИСПОЛЬЗОВАНИЕМ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ

СИМУЛЯЦИЯ СЕТИ С ПЕРЕМЕННОЙ ТОПОЛОГИЕЙ С ИСПОЛЬЗОВАНИЕМ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ

Кашанов И.В. Шамин П.Ю. Статья в формате PDF 136 KB

Исследование параметров компьютерных сетей при различных хаpaктеристиках отдельных компонентов позволяет выбрать сетевое и вычислительное оборудование с учетом производительности, качества обслуживания, надежности и стоимости. Поскольку стоимость одного порта активного сетевого оборудования в зависимости от производителя оборудования, используемой технологии, надежности, управляемости может меняться от десятков рублей до десятков тысяч, моделирование позволяет минимизировать стоимость оборудования, предназначенного для использования в компьютерных сетях.

Существует большое количество сетевых симуляторов, в пределах от очень простого к очень сложному, способных моделировать глобальные сети, с большим числом узлов (персональные компьютеры, сервера, маршрутизаторы, переключатели, концентраторы и др.) и разнообразным набором параметров. Моделирование таких сетей требует больших вычислительных мощностей, поэтому происходит на высокопроизводительных кластерных системах с применением параллельных вычислений.

Одна из возможных архитектур сетевых симуляторов применяющих параллельные вычисления - моделирование целой сети в каждом процессе. Согласно этой архитектуре общий процесс распараллеливания можно представить в виде 3 шагов (рис. 1).

На первом шаге нулевой процесс генерирует сеть, определяет топологию, разнообразные параметры. Затем рассылает полученную сеть всем остальным процессам.

В зависимости от числа узлов, на каждом процессе определяется свой диапазон «активных» узлов. Это значит, что узлы только из этого диапазона могут выполнять все необходимые функции (зависят от целей моделирования; например, генерация сообщений), остальные могут лишь принимать и передавать сообщения.

На втором шаге моделируется работа сети, при этом каждый процесс выполняет поставленные задачи только над «активными» узлами.

По завершению всех операций, на третьем шаге, все полученные данные посылаются нулевому процессу, который их обpaбатывает и выводит результаты.

 

Рис. 1. Моделирование целой сети в каждом процессе

Вторая архитектура сетевого симулятора с применением параллельных вычислений - моделирование фрагмента сети в каждом процессе. Данную архитектуру можно также представить в виде 3 шагов (рис. 2).

 

Рис. 2. Моделирование фрагмента сети в каждом процессе

На первом шаге нулевой процесс генерирует сеть, определяет топологию, разнообразные параметры. Затем каждому процессу посылает фрагмент сети - диапазон «активных» узлов.

На втором шаге моделируется работа сети, при этом каждый процесс оперирует со своим фрагментом сети и с фрагментами других процессов по каналам связи между процессами.

На третьем шаге происходит сбор полученной информации, ее анализ и вывод результатов.

Каждая из описанных архитектур сетевого симулятора, применяющего параллельные вычисления, имеет как преимущества, так и недостатки. Главным недостатком первой архитектуры является то, что требуются большие объемы памяти, так как каждый процесс хранит всю моделируемую сеть. К недостаткам второй архитектуры относится использование каналов связи между процессами, что замедляет работу симулятора.

Сравнительные испытания проводились на кластерах с использованием собственного, простого симулятора, способного генерировать сеть, определять топологию и имитировать передачу простого сообщения, хаpaктеризующегося временем жизни - TTL.

В ходе испытаний выяснилось, что при написании сетевого симулятора с использованием параллельных вычислений эффективней использовать первую архитектуру - модель целой сети в каждом процессе. Выбор этой архитектуры обоснован тем, что, хотя и расходуется значительный объем памяти, передача сообщений между узлами моделируемой сети внутри одного процесса проходит быстрее, чем между узлами разных процессов.



ПРИМЕНЕНИЕ СИСТЕМЫ B2B В ДИСТРИБУТОРСКОЙ КОМПАНИИ

Статья в формате PDF 119 KB...

01 06 2023 3:52:48

РЕЛЬЕФ ОКРЕСТНОСТЕЙ Г. КАДНИКОВА

РЕЛЬЕФ ОКРЕСТНОСТЕЙ Г. КАДНИКОВА Статья в формате PDF 87 KB...

31 05 2023 9:56:15

ИССЛЕДОВАНИЕ СОВРЕМЕННЫХ ОСВЕЖИТЕЛЕЙ ВОЗДУХА

ИССЛЕДОВАНИЕ СОВРЕМЕННЫХ ОСВЕЖИТЕЛЕЙ ВОЗДУХА Статья в формате PDF 314 KB...

29 05 2023 22:12:19

КООПЕРАТИВНЫЕ ВЗАИМОДЕЙСТВИЯ В БИНАРНЫХ СПЛАВАХ

КООПЕРАТИВНЫЕ ВЗАИМОДЕЙСТВИЯ В БИНАРНЫХ СПЛАВАХ Статья в формате PDF 101 KB...

23 05 2023 7:39:34

ИЛЬМУШКИН ГРИГОРИЙ МАКСИМОВИЧ

ИЛЬМУШКИН ГРИГОРИЙ МАКСИМОВИЧ Статья в формате PDF 102 KB...

18 05 2023 14:41:44

ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА У МОРСКОЙ СВИНКИ

ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА У МОРСКОЙ СВИНКИ Статья в формате PDF 295 KB...

15 05 2023 19:35:40

НОРМИРОВАНИЕ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ КОМПЬЮТЕРОВ

НОРМИРОВАНИЕ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ КОМПЬЮТЕРОВ Статья в формате PDF 278 KB...

07 05 2023 9:50:25

ЗНАЧЕНИЕ СЪЕЗДОВ ЗЕМСКИХ ВРАЧЕЙ РЯЗАНСКОЙ ГУБЕРНИИ В РАЗВИТИИ ПРОФИЛАКТИЧЕСКОГО НАПРАВЛЕНИЯ МЕДИЦИНЫ КРАЯ

ЗНАЧЕНИЕ СЪЕЗДОВ ЗЕМСКИХ ВРАЧЕЙ РЯЗАНСКОЙ ГУБЕРНИИ В РАЗВИТИИ ПРОФИЛАКТИЧЕСКОГО НАПРАВЛЕНИЯ МЕДИЦИНЫ КРАЯ В статье представлены материалы о значении съездов земских врачей Рязанской губернии (1874 – 1900) и их роль в развитии профилактического направления медицины края. ...

01 05 2023 4:23:30

МАЛЫЕ КОЛЕБАНИЯ ПРИЗМАТИЧЕСКОГО БРУСКА НА ЦИЛИНДРЕ

МАЛЫЕ КОЛЕБАНИЯ ПРИЗМАТИЧЕСКОГО БРУСКА НА ЦИЛИНДРЕ Статья в формате PDF 502 KB...

27 04 2023 18:46:23

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::

СЕРЕБРЯНОЕ ОРУДЕНЕНИЕ ГОРНОГО АЛТАЯ

Приведены сведения о распространённости серебряного оруденения эпитермального типа серебро-сурьмяной и ртутно-серебряной формаций юго-востока Горного Алтая. Основную рудоконтролирующую роль в локализации оруденения осуществляли структурные факторы (разломы разных порядков). Рудные тела представлены жилами, жильными зонами и штокверками. Текстуры руд: вкрапленные, прожилково-вкрапленные, массивные, пятнистые, коррозионные, катакластические, друзовые, каркасные. Руды представлены серебро-сульфосольными ассоциациями минералов при ведущей роли аргентита, тетраэдрита, теннантита, бурнонита, зелигманита, гудмундита, джемсонита. Концентрации серебра в рудах варьируют от нескольких десятков до нескольких тысяч граммов на тонну. Прогнозные ресурсы серебра для Юстыдского рудного узла составили категорий Р1 – 5822 т, Р2 – 25347 т.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ДАННЫХ ЭЛЕКТРОЭНЦЕФАЛОГРАФИИ И ИНДУКЦИОННОЙ МАГНИТОЭНЦЕФАЛОГРАФИИ У ПАЦИЕНТОВ С ХРОНИЧЕСКОЙ ИШЕМИЧЕСКОЙ НЕЙРООПТИКОПАТИЕЙ И ГЛАУКОМОЙ

Проведен сравнительный спектральный анализ биоэлектрической активности головного мозга по данным электроэнцефалографии (ЭЭГ) и индукционной магнитоэнцефалографии (МЭГИ) пациентов с хронической формой ишемической нейрооптикопатии и глаукомой. Выявлен ряд особенностей, хаpaктеризующих наличие данных видов патологий у исследуемых, проявляющихся десинхронизацией работы полушарий, а так же повышением амплитуды спектральной оценки определенных частотных диапазонов МЭГИ и ЭЭГ. У пациентов с ишемической нейрооптикопатией выявлены признаки усиления тонуса адренорецепторов артериальных сосудов, а так же увеличение амплитуды медленных электрических потенциалов. Наличие глаукомы хаpaктеризовалось усилением тонус адренорецепторов гладкой мускулатуры, а так же ослаблением парасимпатического тонуса вегетативной нервной системы. Сравнительный анализ не показал статистически значимых отличий показателей МЭГИ и ЭЭГ.