СИМУЛЯЦИЯ СЕТИ С ПЕРЕМЕННОЙ ТОПОЛОГИЕЙ С ИСПОЛЬЗОВАНИЕМ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ > Полезные советы
Тысяча полезных мелочей    

СИМУЛЯЦИЯ СЕТИ С ПЕРЕМЕННОЙ ТОПОЛОГИЕЙ С ИСПОЛЬЗОВАНИЕМ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ

СИМУЛЯЦИЯ СЕТИ С ПЕРЕМЕННОЙ ТОПОЛОГИЕЙ С ИСПОЛЬЗОВАНИЕМ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ

Кашанов И.В. Шамин П.Ю. Статья в формате PDF 136 KB

Исследование параметров компьютерных сетей при различных хаpaктеристиках отдельных компонентов позволяет выбрать сетевое и вычислительное оборудование с учетом производительности, качества обслуживания, надежности и стоимости. Поскольку стоимость одного порта активного сетевого оборудования в зависимости от производителя оборудования, используемой технологии, надежности, управляемости может меняться от десятков рублей до десятков тысяч, моделирование позволяет минимизировать стоимость оборудования, предназначенного для использования в компьютерных сетях.

Существует большое количество сетевых симуляторов, в пределах от очень простого к очень сложному, способных моделировать глобальные сети, с большим числом узлов (персональные компьютеры, сервера, маршрутизаторы, переключатели, концентраторы и др.) и разнообразным набором параметров. Моделирование таких сетей требует больших вычислительных мощностей, поэтому происходит на высокопроизводительных кластерных системах с применением параллельных вычислений.

Одна из возможных архитектур сетевых симуляторов применяющих параллельные вычисления - моделирование целой сети в каждом процессе. Согласно этой архитектуре общий процесс распараллеливания можно представить в виде 3 шагов (рис. 1).

На первом шаге нулевой процесс генерирует сеть, определяет топологию, разнообразные параметры. Затем рассылает полученную сеть всем остальным процессам.

В зависимости от числа узлов, на каждом процессе определяется свой диапазон «активных» узлов. Это значит, что узлы только из этого диапазона могут выполнять все необходимые функции (зависят от целей моделирования; например, генерация сообщений), остальные могут лишь принимать и передавать сообщения.

На втором шаге моделируется работа сети, при этом каждый процесс выполняет поставленные задачи только над «активными» узлами.

По завершению всех операций, на третьем шаге, все полученные данные посылаются нулевому процессу, который их обpaбатывает и выводит результаты.

 

Рис. 1. Моделирование целой сети в каждом процессе

Вторая архитектура сетевого симулятора с применением параллельных вычислений - моделирование фрагмента сети в каждом процессе. Данную архитектуру можно также представить в виде 3 шагов (рис. 2).

 

Рис. 2. Моделирование фрагмента сети в каждом процессе

На первом шаге нулевой процесс генерирует сеть, определяет топологию, разнообразные параметры. Затем каждому процессу посылает фрагмент сети - диапазон «активных» узлов.

На втором шаге моделируется работа сети, при этом каждый процесс оперирует со своим фрагментом сети и с фрагментами других процессов по каналам связи между процессами.

На третьем шаге происходит сбор полученной информации, ее анализ и вывод результатов.

Каждая из описанных архитектур сетевого симулятора, применяющего параллельные вычисления, имеет как преимущества, так и недостатки. Главным недостатком первой архитектуры является то, что требуются большие объемы памяти, так как каждый процесс хранит всю моделируемую сеть. К недостаткам второй архитектуры относится использование каналов связи между процессами, что замедляет работу симулятора.

Сравнительные испытания проводились на кластерах с использованием собственного, простого симулятора, способного генерировать сеть, определять топологию и имитировать передачу простого сообщения, хаpaктеризующегося временем жизни - TTL.

В ходе испытаний выяснилось, что при написании сетевого симулятора с использованием параллельных вычислений эффективней использовать первую архитектуру - модель целой сети в каждом процессе. Выбор этой архитектуры обоснован тем, что, хотя и расходуется значительный объем памяти, передача сообщений между узлами моделируемой сети внутри одного процесса проходит быстрее, чем между узлами разных процессов.



ПСИХОЛОГИЯ ВЫЖИВАНИЯ ЛИЧНОСТИ

ПСИХОЛОГИЯ ВЫЖИВАНИЯ ЛИЧНОСТИ Новая реальность предъявляет к человеку повышенные требования. Выживание человека в сложных условиях – это сохранение его целостности (как биологического индивида, личности, субъекта деятельности и индивидуальности). Защищенность личности – условие психологического выживания человека в мире. Неосознаваемые психологические защиты снижают свободу действий человека. В статье рассматриваются психологические аспекты адаптации человека. Для сохранения устойчивости личности необходимы психологические константы – мировоззрение, жизненная позиция, смысл жизни, профессионализм. ...

30 11 2022 21:58:14

БРИЛЛЬ ГРИГОРИЙ ЕФИМОВИЧ

БРИЛЛЬ ГРИГОРИЙ ЕФИМОВИЧ Статья в формате PDF 108 KB...

08 11 2022 23:27:40

ЛИЧНОСТНООРИЕНТИРОВАННАЯ ТЕХНОЛОГИЯ

ЛИЧНОСТНООРИЕНТИРОВАННАЯ ТЕХНОЛОГИЯ Статья в формате PDF 259 KB...

19 10 2022 21:48:36

РАСПРЕДЕЛЕНИЕ СУБТИПОВ HCV В ГОРОДЕ КРАСНОДАРЕ

РАСПРЕДЕЛЕНИЕ СУБТИПОВ HCV В ГОРОДЕ КРАСНОДАРЕ Статья в формате PDF 110 KB...

13 10 2022 14:25:22

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::