СИМУЛЯЦИЯ СЕТИ С ПЕРЕМЕННОЙ ТОПОЛОГИЕЙ С ИСПОЛЬЗОВАНИЕМ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ > Полезные советы
Тысяча полезных мелочей    

СИМУЛЯЦИЯ СЕТИ С ПЕРЕМЕННОЙ ТОПОЛОГИЕЙ С ИСПОЛЬЗОВАНИЕМ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ

СИМУЛЯЦИЯ СЕТИ С ПЕРЕМЕННОЙ ТОПОЛОГИЕЙ С ИСПОЛЬЗОВАНИЕМ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ

Кашанов И.В. Шамин П.Ю. Статья в формате PDF 136 KB

Исследование параметров компьютерных сетей при различных хаpaктеристиках отдельных компонентов позволяет выбрать сетевое и вычислительное оборудование с учетом производительности, качества обслуживания, надежности и стоимости. Поскольку стоимость одного порта активного сетевого оборудования в зависимости от производителя оборудования, используемой технологии, надежности, управляемости может меняться от десятков рублей до десятков тысяч, моделирование позволяет минимизировать стоимость оборудования, предназначенного для использования в компьютерных сетях.

Существует большое количество сетевых симуляторов, в пределах от очень простого к очень сложному, способных моделировать глобальные сети, с большим числом узлов (персональные компьютеры, сервера, маршрутизаторы, переключатели, концентраторы и др.) и разнообразным набором параметров. Моделирование таких сетей требует больших вычислительных мощностей, поэтому происходит на высокопроизводительных кластерных системах с применением параллельных вычислений.

Одна из возможных архитектур сетевых симуляторов применяющих параллельные вычисления - моделирование целой сети в каждом процессе. Согласно этой архитектуре общий процесс распараллеливания можно представить в виде 3 шагов (рис. 1).

На первом шаге нулевой процесс генерирует сеть, определяет топологию, разнообразные параметры. Затем рассылает полученную сеть всем остальным процессам.

В зависимости от числа узлов, на каждом процессе определяется свой диапазон «активных» узлов. Это значит, что узлы только из этого диапазона могут выполнять все необходимые функции (зависят от целей моделирования; например, генерация сообщений), остальные могут лишь принимать и передавать сообщения.

На втором шаге моделируется работа сети, при этом каждый процесс выполняет поставленные задачи только над «активными» узлами.

По завершению всех операций, на третьем шаге, все полученные данные посылаются нулевому процессу, который их обpaбатывает и выводит результаты.

 

Рис. 1. Моделирование целой сети в каждом процессе

Вторая архитектура сетевого симулятора с применением параллельных вычислений - моделирование фрагмента сети в каждом процессе. Данную архитектуру можно также представить в виде 3 шагов (рис. 2).

 

Рис. 2. Моделирование фрагмента сети в каждом процессе

На первом шаге нулевой процесс генерирует сеть, определяет топологию, разнообразные параметры. Затем каждому процессу посылает фрагмент сети - диапазон «активных» узлов.

На втором шаге моделируется работа сети, при этом каждый процесс оперирует со своим фрагментом сети и с фрагментами других процессов по каналам связи между процессами.

На третьем шаге происходит сбор полученной информации, ее анализ и вывод результатов.

Каждая из описанных архитектур сетевого симулятора, применяющего параллельные вычисления, имеет как преимущества, так и недостатки. Главным недостатком первой архитектуры является то, что требуются большие объемы памяти, так как каждый процесс хранит всю моделируемую сеть. К недостаткам второй архитектуры относится использование каналов связи между процессами, что замедляет работу симулятора.

Сравнительные испытания проводились на кластерах с использованием собственного, простого симулятора, способного генерировать сеть, определять топологию и имитировать передачу простого сообщения, хаpaктеризующегося временем жизни - TTL.

В ходе испытаний выяснилось, что при написании сетевого симулятора с использованием параллельных вычислений эффективней использовать первую архитектуру - модель целой сети в каждом процессе. Выбор этой архитектуры обоснован тем, что, хотя и расходуется значительный объем памяти, передача сообщений между узлами моделируемой сети внутри одного процесса проходит быстрее, чем между узлами разных процессов.



ИТЕРАЦИОННЫЙ МОДУЛЯРНЫЙ ДИЗАЙН ДВУМЕРНЫХ НАНОСТРУКТУР

ИТЕРАЦИОННЫЙ МОДУЛЯРНЫЙ ДИЗАЙН ДВУМЕРНЫХ НАНОСТРУКТУР В данной работе предложена эволюционная модель формирования двумерных структур. Определены алгоритмы формирования структур в априори структурированном двумерном прострaнcтве путем заполнения его в соответствии с определенными эволюционными правилами. ...

09 04 2024 13:41:11

МАТЕМАТИЧЕСКИЕ МОДЕЛИ В ЗДРАВООХРАНЕНИИ

МАТЕМАТИЧЕСКИЕ МОДЕЛИ В ЗДРАВООХРАНЕНИИ Статья в формате PDF 103 KB...

07 04 2024 0:22:46

АНАТОЛИЙ ИВАНОВИЧ ГУСЕВ

АНАТОЛИЙ ИВАНОВИЧ ГУСЕВ Статья в формате PDF 426 KB...

05 04 2024 13:48:58

ЭНДОКРИННАЯ СИСТЕМА ЖИВОТНЫХ

ЭНДОКРИННАЯ СИСТЕМА ЖИВОТНЫХ Статья в формате PDF 276 KB...

04 04 2024 18:11:12

ЭВТАНАЗИЯ И ВРАЧ: ОТ БИОЭТИКИ И ПРАВА К АНТРОПОЛОГИИ И ЧЕЛОВЕКУ

ЭВТАНАЗИЯ И ВРАЧ: ОТ БИОЭТИКИ И ПРАВА К АНТРОПОЛОГИИ И ЧЕЛОВЕКУ Данная статья посвящена проблеме эвтаназии, которая рассматривается автором в контексте философско-антропологических воззрений таких представителей русской религиозной философии, как Ф.М. Достоевский, В.С. Соловьёв, И.А. Ильин. Согласно их учению, действие, направленное на лишение человека жизни, ведёт к разрушению человеческой природы. Исходя из данной идеи, мы можем рассматривать эвтаназию как действие, ведущее к нарушению человеческой природы врача. ...

03 04 2024 7:44:48

АННАДУРДЫЕВ ОВЛЯКУЛИ

АННАДУРДЫЕВ ОВЛЯКУЛИ Статья в формате PDF 191 KB...

01 04 2024 5:28:32

ВЗАИМОДЕЙСТВИЕ 1,3-ДЕГИДРОАДАМАНТАНА С ДИМЕТИЛТРИСУЛЬФИДОМ

ВЗАИМОДЕЙСТВИЕ 1,3-ДЕГИДРОАДАМАНТАНА С ДИМЕТИЛТРИСУЛЬФИДОМ В статье рассмотрены реакции 1,3-дегидроадамантана, относящегося к напряженным мостиковым [3.3.1]пропелланам, с диметилтрисульфидом. Установлено, что при взаимодействии образуются 1,3-бис(метилтио)адамантан, 1-(метилдитио)-3-(метилтио)адамантан и 1,3-бис(метилдитио)адамантан в соотношении 1:4,5:1. Структуры полученных соединений подтверждены методами хромато-масс-спектометрии и ЯМР1Н-спектроскопии. Выход целевого 1-(метилдитио)-3-(метилтио)адамантана составляет 50 %. Было предположено, что реакция протекает по радикальному механизму. Приведено описание эксперимента. ...

31 03 2024 19:23:36

ВОЗНИКНОВЕНИЕ КОНЦЕПЦИИ РАЗВИТИЯ СИСТЕМЫ МЕНЕДЖМЕНТА КАЧЕСТВА ПРЕДПРИЯТИЙ ЖИЗНЕОБЕСПЕЧЕНИЯ

ВОЗНИКНОВЕНИЕ КОНЦЕПЦИИ РАЗВИТИЯ СИСТЕМЫ МЕНЕДЖМЕНТА КАЧЕСТВА ПРЕДПРИЯТИЙ ЖИЗНЕОБЕСПЕЧЕНИЯ В статье рассмотрен кластерный подход к структурированию экономики и обоснованию стратегий региональной экономической политики повышения качества кластера процессов жизнеобеспечения. ...

30 03 2024 10:28:47

СОРБЕНТЫ ИЗ ОТХОДОВ ТЭС

СОРБЕНТЫ ИЗ ОТХОДОВ ТЭС Статья в формате PDF 422 KB...

28 03 2024 1:20:23

ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ ФОРМИРОВАНИЯ НАВЫКОВ ЗДОРОВОГО ОБРАЗА ЖИЗНИ УЧАЩИХСЯ СЕЛЬСКИХ ШКОЛ ВО ВНЕКЛАССНОЙ РАБОТЕ

ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ ФОРМИРОВАНИЯ НАВЫКОВ ЗДОРОВОГО ОБРАЗА ЖИЗНИ УЧАЩИХСЯ СЕЛЬСКИХ ШКОЛ ВО ВНЕКЛАССНОЙ РАБОТЕ В этой статье рассматриваются вопросы применения инновационных технологии формирования навыков здорового образа жизни учащихся сельских школ во внеурочное время. ...

26 03 2024 14:34:19

ВЛИЯНИЕ БИОПРЕПАРАТОВ НА ФОТОСИНТЕТИЧЕСКИЙ ПОТЕНЦИАЛ И ПРОДУКТИВНОСТЬ РАННИХ ГИБРИДОВ ОГУРЦА В ПЛЕНОЧНОЙ ТЕПЛИЦЕ

ВЛИЯНИЕ БИОПРЕПАРАТОВ НА ФОТОСИНТЕТИЧЕСКИЙ ПОТЕНЦИАЛ И ПРОДУКТИВНОСТЬ РАННИХ ГИБРИДОВ ОГУРЦА В ПЛЕНОЧНОЙ ТЕПЛИЦЕ Установлено, что применение биопрепаратов биогумус, гуми и альбит при замачивании семян и некорневой подкормке раннеспелых гибридов огурца в пленочной теплице, положительно влияют на энергию прорастания и всхожесть семян, ускоряют рост и развитие растений огурца, сокращают межфазный период на 3- 4 дня, вегетационный период, на 5-6 дней. Благоприятно влияют на водный режим растений, увеличение ассимиляционной поверхности, фотосинтетический потенциал и урожайность. Наиболее эффективное действие оказывали биопрепараты биогумус и гумми на гибридах, отечественной селекции Арина и голландской Машенька. ...

23 03 2024 19:23:54

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::