ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ КОЭФФИЦИЕНТОВ ЛИНЕЙНОЙ МОДЕЛИ ПАРНОЙ РЕГРЕССИИ ОТ ПАРАМЕТРОВ ФУНКЦИИ ВЕЙЕРШТРАССА-МАНДЕЛЬБРОТА ПРИ МОДЕЛИРОВАНИИ СРЕДНЕГО ЗНАЧЕНИЯ ФУНКЦИИ С ПОМОЩЬЮ ЕЕ ФРАКТАЛЬНОЙ РАЗМЕРНОСТИ > Полезные советы
Тысяча полезных мелочей    

ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ КОЭФФИЦИЕНТОВ ЛИНЕЙНОЙ МОДЕЛИ ПАРНОЙ РЕГРЕССИИ ОТ ПАРАМЕТРОВ ФУНКЦИИ ВЕЙЕРШТРАССА-МАНДЕЛЬБРОТА ПРИ МОДЕЛИРОВАНИИ СРЕДНЕГО ЗНАЧЕНИЯ ФУНКЦИИ С ПОМОЩЬЮ ЕЕ ФРАКТАЛЬНОЙ РАЗМЕРНОСТИ

ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ КОЭФФИЦИЕНТОВ ЛИНЕЙНОЙ МОДЕЛИ ПАРНОЙ РЕГРЕССИИ ОТ ПАРАМЕТРОВ ФУНКЦИИ ВЕЙЕРШТРАССА-МАНДЕЛЬБРОТА ПРИ МОДЕЛИРОВАНИИ СРЕДНЕГО ЗНАЧЕНИЯ ФУНКЦИИ С ПОМОЩЬЮ ЕЕ ФРАКТАЛЬНОЙ РАЗМЕРНОСТИ

Седельников А.В. Подлеснова Д.П. Ярош Н.С. Статья в формате PDF 151 KB

Введение

При моделировании микроускорений с помощью действительной части фpaктальной функции Вейерштрасса-Maндельброта (ФВМ) [1]:

   (1)

важно грамотно провести отождествление параметров функции (1) и реальных условий процесса возникновения поля микроускорений внутри КА.

Рисунок 1. Динамика изменения среднего значения ФВМ

Этой теме, равно как и возможности использовании ФВМ в виде (1) при тождественно равной нулю случайной фазе, посвящен ряд работ [2-5], с которыми можно ознакомиться для понимания решаемой задачи. В работе [4] были получены корреляционные зависимости между средним значением ФВМ (1) и фpaктальной размерностью D (рис. 1).

Как видно из рис. 1, они пpaктически линейны. Этот факт доказывается с помощью коэффициента детерминации, который при оценке качества моделирования корреляционных зависимостей рис. 1 во всех случаях превышает 0,999 (рис. 2).

Как видно из рис. 1, они пpaктически линейны. Этот факт доказывается с помощью коэффициента детерминации, который при оценке качества моделирования корреляционных зависимостей рис. 1 во всех случаях превышает 0,999 (рис. 2).

Рисунок 2. Зависимость коэффициента детерминации от параметра b при моделировании корреляционных зависимостей рис.1 линейной моделью парной регрессии

Постановка задачи

Для построения функциональной зависимости между фpaктальной размерностью ФВМ D и средним значением ФВМ (1) с помощью линейной модели парной регрессии вида:

     (2)

требуется исследовать влияние параметра b ФВМ на коэффициенты  и  правой части (2), исходя из полученных ранее корреляционных зависимостей рис. 1.

Основные результаты работы

Как видно из рис. 1, оба исследуемых коэффициента с ростом b изменяются. Для аппроксимации корреляционной зависимости  и b (рис. 3)

Рисунок 3. Корреляционная зависимость коэффициента а1 от параметра b

Была сначала построена линейная модель:

    (3)

и с помощью метода наименьших квадратов (МНК) оценены коэффициенты  и , которые получились равными: ; . Таким образом, наилучшая с точки зрения МНК линейная зависимость коэффициента  от b имеет вид:

    (4)

Затем была предпринята попытка улучшить качество аппроксимации за счет учета квадратичного члeна, заменив зависимость (3) на квадратичную вида:

,    (5)

для которой также с помощью МНК были оценены коэффициенты: ; ; . Таким образом, наилучшая с точки зрения МНК квадратичная зависимость коэффициента  от b имеет вид:

   (6)

И, наконец, был произведен учет кубического члeна с помощью зависимости:

,     (7)

При этом коэффициенты, найденные с помощью МНК, оказались равными: ; ; ; .

Таким образом, наилучшая с точки зрения МНК кубическая зависимость коэффициента  от b имеет вид:

     (8)

Качество построенных зависимостей (4), (6) и (8) проверялось с помощью коэффициента детерминации (рис. 4) и критерия согласия -Пирсона (рис. 5).

Рисунок 4. Изменение коэффициента детерминации при усложнении формы модели зависимости коэффициента а1 от параметра b

Усложнение модели связано, прежде всего с высоким качеством аппроксимации корреляционных зависимостей рис. 1 моделью (2). Значения коэффициентов детерминации для линейной и квадратичной моделей составили 0,979 и 0,998 соответственно, что ниже значений коэффициентов детерминации, рассчитанных при моделировании (рис. 2). И только модель (8) позволяет с уверенностью сделать вывод о том, что потерь качества при замене коэффициента  на правую часть (8) не будет, т.к. значение коэффициента детерминации составляет 0,9995.

Рисунок 5. Динамика изменения наблюдаемого значения критерия согласия при усложнении модели

Критерий согласия еще более наглядно показывает улучшение качества моделирования при усложнении формы модели. Критическое значение критерия для рассматриваемых двух степеней свободы равно 5,99147 (5 %-й уровень значимости). Наблюдаемое значение критерия для линейной модели (4) составляет 5,613, что очень близко к критическому, несмотря на высокое значение коэффициента детерминации. Для квадратичной модели (6) величина наблюдаемого значения критерия сокращается более, чем в десять раз: 0,505 и почти в четыре раза сокращается еще для кубической модели (8): 0,130.

Таким образом, проверка качества построенных моделей (4), (6) и (8) показала, что лишь последняя из них достаточно точно описывает динамику изменения коэффициента  в модели (2).

Следующим этапом является исследование зависимости другого параметра  модели (2) от b. При замене корреляционных зависимостей рис.1 на функциональные вида (2) была построена зависимость изменения  при различных значениях b. Эта зависимость приведена на рис. 6.

Рисунок 6. Корреляционная зависимость коэффициента а0 от параметра b

Аналогично схеме построения зависимости  от b, сначала была исследована линейная зависимость, подобная (3). С помощью МНК подобраны коэффициенты этой модели:

      (9)

Затем были подобраны лучшие с точки зрения МНК коэффициенты квадратичной зависимости, подобной (5):

     (10)

и кубической зависимости, подобной (7):

      (11)

Качество построенных моделей (9), (10) и (11) оценивалось с помощью коэффициента детерминации (рис. 7) и критерия согласия -Пирсона (рис. 8).

Рисунок 7. Изменение коэффициента детерминации при усложнении формы модели зависимости коэффициента а0  от параметра b

Рисунок 8. Динамика изменения наблюдаемого значения критерия согласия при усложнении модели

Таким образом, в результате данной работы построена модель зависимости среднего значения ФВМ от параметров функции:

Причем, данная модель объясняет более 99,9% дисперсии корреляционных зависимостей рис.

СПИСОК ЛИТЕРАТУРЫ

  1. Седельников А.В., Бязина А.В., Антипов Н.Ю. Использование функции Вейерштрасса-Maндельброта для моделирования микроускорений на борту КА //Сборник научных трудов X Всероссийского научно-технического семинара по управле­нию движением и навигации ЛА. Самара. 2002. с. 124-128.
  2. Седельников А.В., Корунтяева С.С., Чернышева С.В. Анализ влияния параметров функции Вейерштрасса-Maндельброта на ее закон распределения //Современные наукоемкие технологии. - 2005 г. - № 9. - с. 43-46.
  3. Седельников А.В., Бязина А.В., Иванова С.А. Статистические исследования микроускорений при наличии слабого демпфирования колебаний упругих элементов КА //Научные чтения в Самарском филиале РАО. - Часть 1. Естествознание. - М.: Изд. УРАО. - 2003. - 137 - 158.
  4. Седельников А.В., Корунтяева С.С., Подлеснова Д.П. Исследование динамики изменения среднего значения фpaктальной функции Вейерштрасса-Maндельброта как случайной величины //Фундаментальные исследования. - № 4. - 2006. - с. 84-87.
  5. Седельников А.В., Корунтяева С.С., Чернышева С.В. Выявление коридора значений параметров фpaктальной функции Вейерштрасса-Maндельброта, при которых справедлив нормальный закон распределения функции //Современные наукоемкие технологии. - № 1. - 2006. - с. 85-87.


ПЕРСПЕКТИВНЫЙ СПОСОБ НЕРЕСТА КАРПА В САДКАХ

ПЕРСПЕКТИВНЫЙ СПОСОБ НЕРЕСТА КАРПА В САДКАХ Статья в формате PDF 107 KB...

21 05 2024 9:47:36

РАЗРАБОТКА БИОЛОГИЧЕСКОГО СТИМУЛЯТОРА НА ОСНОВЕ ПУПОВИННОЙ КРОВИ ДЛЯ ИНТЕНСИФИКАЦИИ РЕПАРАЦИИ КОЖИ

РАЗРАБОТКА БИОЛОГИЧЕСКОГО СТИМУЛЯТОРА НА ОСНОВЕ ПУПОВИННОЙ КРОВИ ДЛЯ ИНТЕНСИФИКАЦИИ РЕПАРАЦИИ КОЖИ Проблема создания эффективных препаратов, обладающих выраженным репаративным эффектом и ускоряющих процессы заживления ран после перенесенного механического воздействия, продолжает оставаться очень актуальной. Исследование сводится к созданию биологического стимулятора для интенсификации и возможности скорейшего заживления поврежденных кожных покровов, а не к созданию фармакологического препарата или лекарственного средства ...

18 05 2024 4:35:37

ПОВЫШЕНИЕ ИНТЕРЕСА К МУСУЛЬМАНСКОЙ КУЛЬТУРЕ КАК РЕАКЦИЯ НА ГЛОБАЛИЗАЦИОННЫЕ ПРОЦЕССЫ

ПОВЫШЕНИЕ ИНТЕРЕСА К МУСУЛЬМАНСКОЙ КУЛЬТУРЕ КАК РЕАКЦИЯ НА ГЛОБАЛИЗАЦИОННЫЕ ПРОЦЕССЫ В статье показано увеличение интереса граждан России к истории и культуре стран ислама. Это связано с повышением политической активности этих стран и расширением их туристического сервиза. ...

15 05 2024 22:58:30

СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ПРИ ХРОНИЧЕСКОЙ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ У БОЛЬНЫХ ИШЕМИЧЕСКОЙ БОЛЕЗНЬЮ СЕРДЦА

СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ПРИ ХРОНИЧЕСКОЙ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ У БОЛЬНЫХ ИШЕМИЧЕСКОЙ БОЛЕЗНЬЮ СЕРДЦА В статье описываются математические модели в виде уравнения регрессии, которое позволяет по клиническим признакам хронической сердечной недостаточности со статистической достоверностью предсказать результаты 6-минутного теста. ...

11 05 2024 18:37:22

ЗАНЯТИЯ В СЕКЦИИ ИГРОВЫМИ ВИДАМИ СПОРТА

ЗАНЯТИЯ В СЕКЦИИ ИГРОВЫМИ ВИДАМИ СПОРТА Статья в формате PDF 250 KB...

06 05 2024 8:32:43

РОСТ И РАЗВИТИЕ САЖЕНЦЕВ ЛИСТВЕННИЦЫ В УСЛОВИЯХ ИСКУССТВЕННОГО РАЗВЕДЕНИЯ

РОСТ И РАЗВИТИЕ САЖЕНЦЕВ ЛИСТВЕННИЦЫ В УСЛОВИЯХ ИСКУССТВЕННОГО РАЗВЕДЕНИЯ Приведены результаты опыта искусственного разведения лиственницы, проведенного впервые в Центральной Якутии с целью ускорения лесообразовательного процесса в зеленой зоне с. Матта Мегино-Кангаласского района. Выявлен высокий процент приживаемости саженцев (98,3-83,5 %). Установлено, что в первые годы после посадки идет адаптация саженцев к новым условиям среды, начиная с 3-4 года после посадки дают хороший прирост в высоту. ...

03 05 2024 5:23:39

ДИНАМИКА ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ ПРИ ГЕТЕРОСУГГЕСТИВНОМ ВОЗДЕЙСТВИИ У ЖЕНЩИН РЕПРОДУКТИВНОГО ВОЗРАСТА С РАЗЛИЧНОЙ УСТОЙЧИВОСТЬЮ К ЭМОЦИОНАЛЬНОМУ СТРЕССУ

ДИНАМИКА ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ ПРИ ГЕТЕРОСУГГЕСТИВНОМ ВОЗДЕЙСТВИИ У ЖЕНЩИН РЕПРОДУКТИВНОГО ВОЗРАСТА С РАЗЛИЧНОЙ УСТОЙЧИВОСТЬЮ К ЭМОЦИОНАЛЬНОМУ СТРЕССУ Проведен анализ эффективности курсового гетеросуггестивного воздействия на функциональное состояние ЦНС у женщин репродуктивного возраста. С помощью методов электроэнцефалографии и спектрального анализа вариабельности сердечного ритма получены достоверные данные о положительной динамике на центральном и вегетативном уровнях обеспечения психофизиологической устойчивости обследованных женщин. ...

28 04 2024 16:46:28

РЕОЛОГИЧЕСКИЕ СВОЙСТВА КРОВИ И ЛИМФЫ ПРИ ЭКСПЕРИМЕНТАЛЬНОМ ТОКСИЧЕСКОМ ГЕПАТИТЕ

РЕОЛОГИЧЕСКИЕ СВОЙСТВА КРОВИ И ЛИМФЫ ПРИ ЭКСПЕРИМЕНТАЛЬНОМ ТОКСИЧЕСКОМ ГЕПАТИТЕ При экспериментальном токсическом гепатите у крыс выявлено увеличение объема форменных элементов крови, ускорение свертывания крови и лимфы, увеличение их вязкости, ацидоз, уменьшение уровня гемоглобина в крови. Последнее связано с уменьшением средней концентрации гемоглобина в одном эритроците, несмотря на рост числа эритроцитов в крови. Этот факт, вероятно, связан с превращением в эритроцитах гемоглобина в метгемоглобин, который не участвует в газообмене. Таким образом, при токсическом гепатите ухудшаются реологические свойства крови и лимфы, их текучесть по сосудам на фоне выраженной анемии и снижении трaнcпортной функции лимфатической системы. ...

27 04 2024 6:36:51

ИЗУЧЕНИЕ СВОЙСТВ МЯСА КАБАНА И ОЛЕНИНЫ

ИЗУЧЕНИЕ СВОЙСТВ МЯСА КАБАНА И ОЛЕНИНЫ Статья в формате PDF 262 KB...

24 04 2024 11:49:25

СПОСОБ ПЛАЗМЕННОЙ СВАРКИ НА ПЕРЕМЕННОМ ТОКЕ

СПОСОБ ПЛАЗМЕННОЙ СВАРКИ НА ПЕРЕМЕННОМ ТОКЕ Статья посвящена решению проблемы сварки металлов, имеющих на поверхности тугоплавкие окисные пленки. Были проведены исследования дугового разряда обратной полярности, горящий между соплом плазменной горелки и изделием, возбуждаемый и стабилизируемый с помощью факела плазмы, в ходе экспериментов были получены сваренные образцы из цветных металлов и алюминия. ...

23 04 2024 13:30:13

КАРАМОВА ЛЕНА МИРЗАЕВНА

КАРАМОВА ЛЕНА МИРЗАЕВНА Статья в формате PDF 77 KB...

17 04 2024 22:33:11

Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::