ПЕРЕРАБОТКА И ПРИМЕНЕНИЕ КУБОВЫХ ОСТАТКОВ РЕКТИФИКАЦИИ СТИРОЛА
Монография «Переработка и применение кубовых остатков ректификации стирола» посвящена вопросам утилизации кубовых остатков ректификации стирола (КОРС), образующихся при различных промышленных методах его производства.
Непрерывный рост потребности в стироле для производства полистирольных пластиков, синтетических смол, необходимых для автостроения, электротехнической промышленности, авиа- и судостроения, в промышленности синтетических латексов и бутадиен-стирольных каучуков, лакокрасочных материалов, клеев, пенополистирольных пластиков для строительной индустрии, АБС-пластиков, ряда термоэластопластов приводит к существенному увеличению мощности по его производству. Приведен анализ современного состояния вопросов переработки и применения кубовых остатков ректификации стирола (КОРС), образующихся в промышленности. Современные масштабы производства стирола даже при постоянном совершенствовании технологических процессов обуславливают образование значительных количеств этих отходов (десятки тысяч тонн).
В монографии представлены различные способы получения стирола и подробно рассмотрены два основных промышленных метода производства стирола - производство стирола дегидрированием этилбензола и совместное производство стирола и оксида пропилена, а также стадии образования КОРС и их составы. Рассматриваются способы переработки КОРС и пути рационального использования в композиционных материалах различного назначения.
Показано, что многокомпонентность и нестабильность составов, использование разных ингибирующих систем усложняет его переработку. Однако наличие в КОРС непредельных соединений делает его весьма перспективным для получения полимерных материалов, которые могут быть использованы в лакокрасочной промышленности, а также в производстве различных композиционных материалов.
Рассмотрены литературные данные, опубликованные в отечественных и зарубежных источниках по получению сополимеров на основе КОРС, применение их в лакокрасочных материалах (ЛКМ), резинотехнических изделиях (РТИ) и промышленности синтетических каучуков, модификации пропиточными составами на их основе древесины и древесноволокнистых плит (ДВП) и в других композитах.
Одним из основных путей переработки кубовых остатков ректификации стирола является получение на их основе пленкообразующих сополимеров и использование их в ЛКМ. Представлено большое количество разработок в этом направлении утилизации КОРС.
Покрытия, полученные с использованием сополимеров КОРС образуют прозрачные пленки от светло-коричневого до коричневого цвета с ровной гладкой блестящей поверхностью, обладающие высокими, водо- и атмосферостойкостью, хорошей адгезионной прочностью к металлам, древесине, бетону, керамике, выдерживают воздействие нефтепродуктов и растворов щелочей. ЛКМ их на основе являются полноценным заменителем масляных красок и могут быть рекомендованы для защиты металлических и бетонных сооружений, оборудования, трубопроводов, мелиоративных систем и других коммуникаций, для окраски дачных домиков, изгородей, гаражей, кровель и т. п., позволяют экономить растительное сырье, расширить ассортимент технических лаков, снизить стоимость и исключить дибутилфталат.
По основному показателю пригодности КОРС для получения лака - содержание стирола более 20 мас.% - только 53,2 % всей массы кубовых остатков отвечают этому требованию. Следовательно, для решения проблемы полной переработки КОРС и создания безотходного производства необходимо изыскивать новые пути, которые мало зависят от содержания стирола в исходном кубовом остатке.
Поэтому одним из направлений применения сополимеров, полученных на основе КОРС, явилось перспективность его использования в резиновых композициях, основанная на том, что введение стиролсодержащих полимеров невысокой молекулярной массы в резиновую смесь позволяет снизить ее вязкость и повысить динамические показатели вулканизатов для резиновых смесей на основе каучуков.
Резины из резиновой смеси, содержащей в качестве мягчителя сополимер КОРС, имеют меньшую усадку и эластическое восстановление при более высокой когезионной прочности резиновых смесей, а вулканизаты имеют более высокие модули, сопротивление разрыву и число циклов при многократном растяжении.
Сополимеры кубовых остатков используются для повышения механической прочности, светостойкости и снижения электризуемости покрытий полов в композиции на основе синтетического каучука, наполнителя и пигмента. Сополимеры КОРС вводят в состав покрытий для увеличения адгезии к мокрой поверхности бетона и металла. Раствор сополимера КОРС используют для приготовления безрулонной кровли.
Сополимеры на основе КОРС рекомендуют использовать в составах дорожно-строительных материалов и в асфальтобетонных композициях. Использование КОРС как компонента асфальтобитумных покрытий, улучшающего адгезию к гравию и сцепление с грунтом в дорожном строительстве. Дополнительное введение КОРС в количестве до 10 % от массы битума позволяет улучшить ряд показателей асфальтобетонов, экономить битум.
Другим направлением является пропитка древесины и ДВП, для которой рекомендуются составы на основе высыхающих масел, синтетические полимерные материалы, используемые в композициях с целью повышения прочности, водо- и влагостойкости, являющиеся в ряде случаев достаточно дорогими. Наиболее перспективными могут быть комбинированные составы, полученные из отходов нефтехимической промышленности. Способы наполнения древесины и ДВП различными полимерными системами в совокупности с изменением её основных свойств позволяют реализовать достоинства новых пропитывающих составов на основе сополимеров КОРС и снизить стоимость древесно-полимерных материалов. Важным аспектом при этом является то, что для этой цели могут быть использованы сополимеры кубовых остатков ректификации стирола, которые по каким-либо показателям не соответствуют техническим условиям для лакокрасочных материалов.
Реакционное наполнение древесины различными полимерами дает возможность получить композиты с исходным анатомическим строением древесины и улучшенными свойствами по сравнению с немодифицированными образцами. По уровню достигаемых физико-механических и технологических параметров они обеспечивают пpaктически полное соответствие модифицированной древесине мягких лиственных пород дефицитной древесине хвойных и твердых лиственных пород (дуба) и позволяют использовать ее в жилищном строительстве. Обработка изделий из древесины, особенно, в случае использования феноло- и мочевиноформальдегидных смол, позволяет значительно уменьшить выделение вредного и токсичного формальдегида из изделий в процессе их эксплуатации.
Модификация ДВП сополимерами КОРС позволяет значительно повысить физико-механические показатели плит, водостойкость и сократить длительность технологического процесса пропитки ДВП, а также снизить себестоимость плит и создать интегрированную технологию комплексного использования вторичных материальных ресурсов.
Таким образом, показана возможность использования отходов производства стирола и продуктов их переработки в различных композициях, которая приобретают особую актуальность в условиях экономии сырьевых ресурсов и охраны окружающей среды.
Монография предназначена для специалистов нефтехимической, химической, шинной, резинотехнической, строительной промышленности, полезна студентам вузов, специализирующимся в области утилизации отходов и композиционных материалов.
Статья в формате PDF 134 KB...
21 01 2025 5:25:28
Статья в формате PDF 100 KB...
20 01 2025 23:30:40
Статья в формате PDF 138 KB...
19 01 2025 1:48:58
18 01 2025 9:37:10
Статья в формате PDF 100 KB...
17 01 2025 15:33:21
Статья в формате PDF 121 KB...
16 01 2025 14:44:47
Статья в формате PDF 110 KB...
15 01 2025 16:14:16
Статья в формате PDF 253 KB...
14 01 2025 23:52:41
Статья в формате PDF 153 KB...
13 01 2025 11:14:20
Статья в формате PDF 108 KB...
12 01 2025 0:22:29
11 01 2025 12:59:26
Статья в формате PDF 114 KB...
10 01 2025 5:32:26
Статья в формате PDF 103 KB...
09 01 2025 4:42:58
В работе рассмотрена очистка природных вод от ионов жесткости с помощью сорбентов на основе выщелоченных базальтовых волокон, модифицированных бентонитовой глиной. Определены статические и динамические параметры очистки. ...
08 01 2025 4:40:28
Статья в формате PDF 276 KB...
07 01 2025 16:10:33
Статья в формате PDF 232 KB...
06 01 2025 18:11:45
Статья в формате PDF 127 KB...
05 01 2025 5:13:24
Статья в формате PDF 110 KB...
03 01 2025 23:19:23
Статья в формате PDF 111 KB...
02 01 2025 21:31:29
Статья в формате PDF 121 KB...
01 01 2025 12:50:39
Статья в формате PDF 206 KB...
31 12 2024 19:43:50
Статья в формате PDF 127 KB...
30 12 2024 14:17:56
Статья в формате PDF 121 KB...
29 12 2024 21:39:45
Статья в формате PDF 244 KB...
28 12 2024 2:13:39
Статья в формате PDF 129 KB...
27 12 2024 4:30:52
Статья в формате PDF 294 KB...
26 12 2024 4:19:15
Статья в формате PDF 114 KB...
25 12 2024 2:10:10
Статья в формате PDF 112 KB...
24 12 2024 16:24:38
Статья в формате PDF 326 KB...
22 12 2024 5:47:25
На биопсийном материале матки семнадцати первородящих женщин в возрасте от 20 до 38 лет с нормальной или аномальной родовой деятельностью проводили количественное светооптическое изучение строения миометрия. Оценили тканевой состав, клеточный состав и число гладкомышечных клеток в поле зрения микроскопа. Показали, что основными компонентами миометрия являются гладкомышечные волокна, элементы соединительной ткани и микрососудистого русла. Гладкомышечные клетки демонстрировали разное сродство к толуидиновому синему, и на основании этого они были условно поделены на светлые, темные и промежуточные клетки. Выявлены межгрупповые вариации всех оцененных количественных параметров. ...
21 12 2024 6:45:22
Статья в формате PDF 139 KB...
19 12 2024 6:52:20
Статья в формате PDF 127 KB...
18 12 2024 20:58:41
Статья в формате PDF 136 KB...
17 12 2024 14:40:31
Статья в формате PDF 250 KB...
16 12 2024 2:50:33
Статья в формате PDF 206 KB...
15 12 2024 18:45:14
В статье рассматриваются вопросы разработки единой системы подготовки спортсменов. Обоснованы четыре взаимообусловленных и неразрывно связанных между собой факторов, от которых зависит прогресс высшего спортивного мастерства. Первый фактор системы подготовки предполагает наличие у спортсменов высоких двигательных и психологических качеств в сочетании с хорошим здоровьем. Второй фактор системы подготовки предполагает совершенную методику спортивной тренировки, систему соревнований и восстановления. Третий фактор системы подготовки предполагает наличие хорошо оборудованных на современном уровне мест для тренировочных занятий, соревнований и восстановления (отдыха). Четвёртый фактор системы подготовки предполагает высокий уровень знаний, педагогическое мастерство тренера, и постоянное самоусовершенствование спортсмена. Приведённые факторы определяют основные принципиальные положения системы подготовки спортсмена. Разработаны и разделены по возрастным группам (от 7 до 20 лет и старше) требования предъявляемые к системе подготовки спортсмена и соревнованиям. ...
14 12 2024 6:58:48
Статья в формате PDF 123 KB...
13 12 2024 0:21:38
Еще:
Поддержать себя -1 :: Поддержать себя -2 :: Поддержать себя -3 :: Поддержать себя -4 :: Поддержать себя -5 :: Поддержать себя -6 :: Поддержать себя -7 :: Поддержать себя -8 :: Поддержать себя -9 :: Поддержать себя -10 :: Поддержать себя -11 :: Поддержать себя -12 :: Поддержать себя -13 :: Поддержать себя -14 :: Поддержать себя -15 :: Поддержать себя -16 :: Поддержать себя -17 :: Поддержать себя -18 :: Поддержать себя -19 :: Поддержать себя -20 :: Поддержать себя -21 :: Поддержать себя -22 :: Поддержать себя -23 :: Поддержать себя -24 :: Поддержать себя -25 :: Поддержать себя -26 :: Поддержать себя -27 :: Поддержать себя -28 :: Поддержать себя -29 :: Поддержать себя -30 :: Поддержать себя -31 :: Поддержать себя -32 :: Поддержать себя -33 :: Поддержать себя -34 :: Поддержать себя -35 :: Поддержать себя -36 :: Поддержать себя -37 :: Поддержать себя -38 ::